Eric Gautier
VC Salle A
Centre de la Vieille Charité
2 rue de la Charité
13002 Marseille
Habiba Djebbari: habiba.djebbari[at]univ-amu.fr
This paper considers treatment effects under endogeneity with complex heterogeneity in the selection equation. We model the outcome of an endogenous treatment as a triangular system, where both the outcome and first-stage equations consist of a random coefficients model. The first-stage specifically allows for nonmonotone selection into treatment. We provide conditions under which marginal distributions of potential outcomes, average and quantile treatment effects, all conditional on first-stage random coefficients, are identified. Under the same conditions, we derive bounds on the (conditional) joint distributions of potential outcomes and gains from treatment, and provide additional conditions for their point identification. All conditional quantities yield unconditional effects (e.g., the average treatment effect) by weighted integration.