

Christian AARSET (he/him)

PERSONAL DETAILS

ADDRESS Untere-Masch-Str. 23, 37073 Göttingen, Germany
PHONE & E-MAIL +49 175 977 9183, c.aarset@math.uni-goettingen.de
HOMEPAGE <https://sites.google.com/view/christian-aarset/home>
ORCID [0000-0001-8163-9305](https://orcid.org/0000-0001-8163-9305)
NATIONALITY Norwegian

Research Interest	Language skills	
• Optimal experimental design (main focus area)	NORWEGIAN	Native speaker
• Bayesian inverse problems	ENGLISH	IELTS: C2, Expert
• Passive imaging and correlation data	GERMAN	C1, Advanced
• Scientific computation for large-scale problems	ROMANIAN	Advanced
• Machine learning	FRENCH	Intermediate
• Optimisation	JAPANESE	Beginner
• Dynamical systems and bifurcation theory	VIETNAMESE	Beginner

DEGREES

2020	Doctor of Technical Science – <i>University of Klagenfurt, Austria</i>
–	BIFURCATIONS IN PERIODIC INTEGRODIFFERENCE EQUATIONS
2016	Field: Dynamical systems. Dated: 08.07.2020
2016	Master of Mathematics – <i>University of Oslo, Norway</i>
–	ON THE CONTINUITY OF THE SPECTRUM OF FIELDS OF NORMAL OPERATORS
2013	Field: Functional analysis
2013	Master of Mathematics – <i>University of Oslo, Norway</i>
–	THE D-BAR EQUATION ON LAMINATIONS OF RIEMANN SURFACES
2011	Field: Complex analysis

OTHER EDUCATION AND EXPERTISE

2017	LEHRKOMPETENZ ENTWICKELN ("DEVELOPING TEACHING COMPETENCE")
	Earned qualification for teaching at the University of Klagenfurt

CURRENT EMPLOYMENT

2028	Postdoctoral researcher – <i>Aix-Marseille University, School of Economics, France</i>
–	Postdoctoral researcher
2026	○ Primary project: Machine learning for time-dependent PDEs, with applications to real-world cardiovascular modelling

PREVIOUS WORK EXPERIENCE

	Postdoctoral researcher – University of Göttingen, Institute for Numerical and Applied Mathematics, Germany Associate Member, CRC 1456 – C04 (Mathematics of Experiment – Correlations of solar oscillations: modeling and inversions) <ul style="list-style-type: none"> ○ Primary project: Developing the novel theory of optimal experimental design with correlation data in PDE-driven applications from physics ○ Investigated Bayesian inverse problems for random source problems, combining regularisation theory, stochastics and matrix theory ○ Developing Python toolbox OPTOED. Algorithmic OED for general PDE-driven applications and large scale computing ○ Co-development of package REGPY for algorithmic inverse problems ○ Secondary project: Bi-level mesh refinement with Dr. Tram Nguyen ○ Research stay at Courant Institute of Mathematical Sciences (Jan-Feb 2025)
2026 – 2022	Postdoctoral researcher – University of Graz, Inst. Math. and Sc. Comp., Austria Research and teaching responsibility, industrial collaboration <ul style="list-style-type: none"> ○ Primary project: SOLARHIS (FFG Grant 881561). Energy disaggregation via smart meter readings ○ Main author of Python toolbox CSC (Convolutional Sparse Coding). Learned disaggregation of household energy consumption data ○ Secondary project: Physics-informed learning, utilising machine learning and inverse problems to learn non-linearities in time-dependent PDEs.
2022 – 2020	Postdoctoral researcher – University of Bergen, Department of Mathematics, Norway Solo proposal BIFURCATIONS IN MICRO-MACRO EVOLUTION MODELS to MSCA-IF 2020 call. Top 12%, received Seal of Excellence. <ul style="list-style-type: none"> ○ Population models: Bifurcation theory in Micro- and Macroevolution ○ Interdisciplinary meetings: Centre for Eco. & Evo. Synthesis, Norway ○ Secondary project: Bifurcation theory for cracks in porous media
2020 – 2020	Graduate Researcher – University of Klagenfurt, Department of Mathematics, Austria Research and lecture responsibilities, member of doctoral college Karl Popper <ul style="list-style-type: none"> ○ Primary project: Bifurcations in periodic integro-difference equations
2020 – 2016	

RESEARCH SUPERVISION AND LEADERSHIP EXPERIENCE

2025 – 2023	Co-supervision of bachelor student – University of Göttingen, Germany Thesis topic: UNROLLED FIRST-ORDER METHODS VIA NEURAL NETWORKS Exploration and comparison of unrolled approaches for sparse regression
2022 – 2020	SOLARHIS Project – University of Graz, Austria Industrial collaboration project Instruction of doctoral student in preparing Python code Liaison with industry partner

TEACHING MERITS

2025 – 2022	Teacher – University of Göttingen, Germany Teaching, exercises and exams, revising lecture notes, authoring programming exercises and coded solutions, 4 hours/week (English, postgraduate courses): <ul style="list-style-type: none"> Winter 2023 Inverse Problems III Winter 2022 Inverse Problems I Summer 2023 Inverse Problems II
2022 – 2020	Teacher – University of Graz, Austria Teaching, exercises and exams, 2 hours/week (German): <ul style="list-style-type: none"> Summer 2022 Analysis II for Teachers Summer 2021 Analysis II for Teachers Winter 2021 Analysis I Winter 2020 Analysis I

	Teaching Assistant – University of Klagenfurt, Austria				
	Teaching, exercises and exams, 2-4 hours/week (German/English):				
2020	Summer 2020	Analysis 2	Summer 2019	Analysis 2	Summer 2018
–		Analysis für Informatik			Analysis 2
2016		Methodology 1: Mathematics			
	Winter 2019	Analysis 1 & 3	Winter 2018	Analysis 1	

AWARDS AND HONOURS

2024	TRUSTED REVIEWER for IOP Inverse Problems
2010	NORWEGIAN CHEMISTRY OLYMPIAD, Contestant
2010	NIELS HENRIK ABEL MATHEMATICS COMPETITION, 8th Place

RESEARCH FUNDING AND GRANTS

	DFG Sachbeihilfe Currently composing and planning to submit solo proposal:
2025	<p>Funder DFG</p> <p>Title SENSORA: SENSOR SHAPE OPTIMISATION FOR AEROACOUSTICS</p> <p>Duration 3 years</p> <p>Fellow/PI Christian Aarset</p> <p>Result To be submitted</p> <p>Partners TBD</p>
	Klaus Tschira Boost Fund Solo proposal:
2024	<p>Funder Klaus Tschira Foundation</p> <p>Title OEDAS:</p> <p>OPTIMAL EXPERIMENTAL DESIGN FOR AEROACOUSTIC SENSING</p> <p>Duration 1.5 years</p> <p>Fellow/PI Christian Aarset</p> <p>Result Not funded</p> <p>Partners Georg-August Universität Göttingen, Germany</p>
2022	<p>Arqus Career Week, University of Graz Received and declined funding offer, approx. €1000</p>
	H2020-MSCA-Individual Fellowship call Composing and submitting solo proposal:
2021	<p>Funder Horizon Europe: Marie Skłodowska-Curie Actions Individual Fellowships 2020</p> <p>Title BiMIMA: BIFURCATIONS IN MICRO-MACRO EVOLUTION MODELS</p> <p>Duration 2 years</p> <p>Fellow/PI Christian Aarset</p> <p>Total score 88.80% (top 12% out of 11573 proposals)</p> <p>Result Seal of Excellence – Given to top-quality proposals recommended for funding by other sources</p> <p>Partners Universities of Bergen and Oslo, Norway</p>
2019	<p>Young Scientist Mentoring Program, University of Klagenfurt Received funding approx. €800 for research visit to Prof. Robert Skiba, Nicolaus Copernicus University in Torun, Poland</p>
2018	<p>Young Scientist Mentoring Program, University of Klagenfurt Received funding approx. €900 for research visit to Prof. Wojciech Kryszewski, Nicolaus Copernicus University in Torun, Poland</p>

RESEARCH OUTPUT

	C. Aarset GLOBAL OPTIMALITY CONDITIONS FOR SENSOR PLACEMENT, WITH EXTENSIONS TO BINARY LOW-RANK A-OPTIMAL DESIGNS Inverse Problems 41, 39pp, p. 065013 Sole author
2024	C. Aarset, A. Habring, M. Holler, M. Mitter UNSUPERVISED ENERGY DISAGGREGATION VIA CONVOLUTIONAL SPARSE CODING IEEE Transactions on Consumer Electronics 70(1), pp. 4303-4310 Main author of theoretical aspects and accompanying software toolbox
2024	C. Aarset, M. Holler, T. Nguyen LEARNING-INFORMED PARAMETER IDENTIFICATION IN NONL. TIME-DEP. PDEs Appl. Math. Optim. 88, 53pp, Art. Id. 76 Architecture-based convergence guarantees and verification
2023	C. Aarset, C. Pötzsche BIFURCATIONS IN PERIODIC INTEGRODIFFERENCE EQUATIONS IN $C(\Omega)$ I Discrete & Continuous Dynamical Systems – B, 26(1), 60pp, AIMS Main author, theoretical bifurcation conditions and numerical verification
2021	C. Aarset, C. Pötzsche BIFURCATIONS IN PERIODIC INTEGRODIFFERENCE EQUATIONS IN $C(\Omega)$ II Communications on Pure & Applied Analysis, 19(4), 28pp, AIMS Main author, theoretical bifurcation conditions and numerical verification
2020	

Proceedings

	C. Aarset, T. Nguyen A-OPTIMAL SENSOR PLACEMENT FOR THE HEAT EQUATION WITH FINAL TIME MEASUREMENT To be submitted to the Proceedings of IFIP TC7 Optimal experimental design, theory and implementation
2025	
2024	C. Aarset A GLOBAL OPTIMUM-INFORMED GREEDY ALGORITHM FOR A-OED Inverse Problems: Modelling and Simulation – Extended Abstracts of the IPMS Conference 2024, Birkhäuser Cham Sole author

	C. Aarset, T. Nguyen BI-LEVEL REGULARIZATION VIA ITERATIVE MESH REFINEMENT FOR AEROACOUSTICS Inverse Problems: Modelling and Simulation – Extended Abstracts of the IPMS Conference 2024, Birkhäuser Cham Numerical analysis and implementation
2024	

Publications in Preparation

C. Aarset, T. Hohage, G. Stadler OPTIMAL EXPERIMENTAL DESIGN FOR INVERSE PROBLEMS WITH CORRELATION DATA Main author, theoretical and numerical analysis
C. Aarset, M. Knöller, T. Nguyen SENSOR PLACEMENT FOR A 3D INVERSE SOURCE PROBLEM Main author of optimal experimental design-related content
T. Nguyen, C. Aarset, K. Straatman FEM-BASED RECONSTRUCTION OF REACTION LAWS IN REACTION-ADVECTION-DIFFUSION SYSTEMS: BI-LEVEL VS REDUCED AND ALL-AT-ONCE INVERSION Co-author, finite element theory and implementation
T. Nguyen, C. Aarset, B. Kaltenbach DATA ASSIMILATION VIA MODEL REFERENCE ADAPTATION FOR LINEAR AND NONLINEAR DYNAMICAL SYSTEMS Co-author, dynamical systems and computational aspects

Authored Software

2025	OptOED (PYTHON) – Efficient A-optimal experimental design for PDEs
2022	CSC (PYTHON) – Industry-scale unsupervised learning for disaggregation
2018	IDEPack (MATLAB) – Numerical bifurcation analysis

Published Reviews

2019	C. Aarset: NONAUTONOMOUS PERIODIC DIFFERENCE EQUATIONS: WITH APPLICATIONS IN POPULATIONS DYNAMICS AND ECONOMICS Jour. of Difference Eq. and App., 25(4), 597-598, Taylor & Francis
------	--

OTHER KEY ACADEMIC MERITS

International Conferences – Organisation

2025	ENUMATH 2025 ORGANISING MINISYMPOSIUM: “NUM. METHODS FOR PDE-BASED INVERSE PROBLEMS”
2025	AIP 2025 ORGANISED AND CHAIRED MINISYMPOSIUM: “OPTIMAL EXPERIMENTAL DESIGN FOR INVERSE PROBLEMS AND RELATED TOPICS”
2024	IFIP TC7 System Modeling and Optimization ORGANISED AND CHAIRED MINISYMPOSIUM: “CORRELATION-BASED PASSIVE IMAGING AND OPTIMAL EXPERIMENTAL DESIGN”
2023	6th European Conference on Computational Optimization ORGANISED AND CHAIRED FOCUS SESSION: “INVERSE PROBLEMS”
2023	11th Applied Inverse Problems Conference LOCAL ORGANIZER, TECHNICAL SUPPORT CHAIRED TWO CONTRIBUTED SESSIONS

International Conferences – Invited Talks

2026	IPMS 2026 To give invited talk: LOW-RANK MODELLING FOR OPTIMAL EXPERIMENTAL DESIGN
2025	ENUMATH 2025 Invited talk: OPTIMALITY CRITERIA IN SENSOR PLACEMENT
2025	AIP 2025 Invited talk: OPTIMALITY CONDITIONS IN OED
2024	IPMS 2024 Inverse Problems: Modeling and Simulation Invited talk: OPTIMAL EXPERIMENTAL DESIGN IN AEROACOUSTICS
2024	IFIP TC7 System Modeling and Optimization Invited talk: OED FOR CORRELATION DATA IN AEROACOUSTICS
2023	6th European Conference on Computational Optimization Invited talk: OPTIMAL EXPERIMENTAL DESIGN UNDER CORRELATION
2019	Dynamics, Equations and Applications Invited talk: DYNAMICS FOR SPATIALLY DISTRIBUTED POPULATIONS
2018	Nonlinear Analysis and Boundary Value Problems 2018 Invited talk: BIFURCATIONS IN PERIODIC IDES

Other Talks, Presentations and Posters

2025	MAKUTU, Pau Talk: OPTIMAL EXPERIMENTAL DESIGN, LARGE-SCALE COMPUTATION AND PASSIVE IMAGING
2025	New York University Talk: LOW-RANK TECHNIQUES FOR OPTIMAL EXPERIMENTAL DESIGN
2023	CRC 1456 Retreat, University of Göttingen Tutorial: OPTIMAL EXPERIMENTAL DESIGN
2023	Chemnitz Symposium on Inverse Problems Talk: OED FOR CORRELATION DATA IN AEROACOUSTICS
2023	11th Applied Inverse Problems Conference Talk: CORRELATION DATA AND EXPERIMENTAL DESIGN
2022	LMS Invited Lectures on Mathematics of Deep Learning Poster: ENERGY DISAGGREGATION VIA UNSUPERVISED LEARNING
2021	2nd Alps-Adriatic Inverse Problems Workshop 2021 Talk: IPALM-BASED UNSUPERVISED ENERGY DISAGGREGATION
2021	Joint Research Group Seminar, Technical University of Graz Talk: UNSUPERVISED ENERGY DISAGGREGATION VIA CONVOLUTIONAL SPARSE CODING

Academic Citizenship

2020	Reviewer for IOP Inverse Problems
–	Reviewer for Machine Learning: Science and Technology
–	Reviewer for Springer Machine Learning
2018	Ph.D. Vice Speaker
–	Alpen-Adria Universität Klagenfurt

Professional Memberships

Inverse Problems International Association German Speaking Inverse Problems Society

Public outreach

2021	Alumni Chapter NORDICS , University of Graz, Austria Gave interview on the role of mathematics in science
2020	"Mathematischer Blick in die Glaskugel" – Interview, Der Standard Popular scientific description of my work on bifurcation theory in ecology and its potential impact in one of Austria's largest newspapers

ACADEMIC REFERENCES

Univ.-Prof. Dr. Thorsten Hohage – Previous group leader
Professor for Inverse Problems, Fellow at MPI Solar System Research
Institute for Numerical and Applied Mathematics
University of Göttingen
Contact: +49 (0)551-39 4529, hohage@math.uni-goettingen.de

Univ.-Prof. Dr. Georg Stadler – Co-author on optimal experimental design
Professor of Mathematics and Computer Science
Courant Institute of Mathematical Sciences
New York University
Contact: +1 212 998 3111, stadler@cims.nyu.edu

Assoc.-Prof. Dr. Anne Wald – Joint supervision of bachelor student
Chair for Applied Mathematics in the Natural Sciences
Institute for Numerical and Applied Mathematics
University of Göttingen
Contact: +49 (0)551-39 24393, a.wald@math.uni-goettingen.de

Assoc. Prof. Dr. Martin Holler – Former group leader
Head of the research group “Mathematics of data science”
Department of Mathematics and Scientific Computing
University of Graz
Contact: +43 316 380 5156, martin.holler@uni-graz.at