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Abstract

Decision makers often seek to target the most deserving, or the most productive,
people within a community, while lacking perfect information. This paper examines
the allocation problem of a good with a positive externality without monetary pay-
ments. Agents, embedded in a network, know both their own and their neighbors’
valuations. The principal’s goal is to allocate the good to the agent with the high-
est valuation by proposing a mechanism which asks each agent to report their own
and their neighbors’ valuations and allocates the good based on these reports. This
requires to correctly incentivize agents to report their truthful information. Due to
the positive externalities, agents’ incentives are partially aligned with the principal’s
objective—an agent not only wants to receive the good but also prefers that the
agent with the highest valuation receives it if they do not. The paper identifies the
network structures in which an efficient mechanism exists without assuming any
common knowledge on the distribution from which the valuation is drawn, regard-
less of their beliefs about agents they are not directly connected to. We show that
such mechanism exists if and only if at least two agents are connected to everyone.
If agents do not use weakly dominated strategies, such mechanism exists if there
is at least one agent connected to everyone. This insight guides decision makers in
structuring agent networks when they have control over connections.
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1 Introduction

Many allocation problems involve distributing resources that benefit not only individual
recipients but also the broader community. For example, consider a CEO deciding whom
to appoint as the manager of a department within a company. The CEO aims to select
the most productive individual for the role but has no information about each candidate’s
productivity. If a highly productive person is chosen, both the individual and the entire
department benefit, as a capable leader can enhance overall performance. Another ex-
ample is a government allocating a budget to subsidize research and development (R&D)
for firms within a specific industry. While the subsidy directly benefits the recipient firm
by fostering innovation, it also indirectly benefits the entire industry through spillover ef-
fects from new technologies developed by the subsidized firms. In both scenarios, because
of the positive externalities, agents may have an incentive to truthfully report the most
productive agent among those they know when asked by the CEO or the government
whom aim to identify the most productive individual.

In such cases, a standard approach with monetary transfers is difficult to implement.
For instance, a manager should not be promoted simply for transferring money to the
CEO, and in the R&D context, the resource being allocated is the money itself, making
direct monetary transfers impractical.

With these settings in mind, this paper examines an allocation problem without mon-
etary transfers, faced by a principal such as a government or CEO, in situations where
the characteristics of each agent (e.g., productivity, ability) are unknown to the princi-
pal. However, agents know their own characteristics and those of some other agents with
whom they are connected in a network. For example, a department member may be more
familiar with the work habits of colleagues who sit nearby or with whom they frequently
collaborate. Additionally, the good being allocated generates a positive externality, which
varies based on the characteristics of the agents who receive it. This means that each
agent cares about who receives the good, even if they are not a recipient themselves.1

The principal’s objective is to allocate the good to the most productive agent. To
accomplish this, the principal designs a mechanism—an allocation rule based on infor-
mation provided by agents—that incentivizes agents to reveal truthful information. We
investigate mechanisms which asks each agent not only about themselves but also about
their connected friends in the network. Agents, who have their own interest, might want
to misreport information about himself or his neighbors if doing so increases their payoff.
Moreover, whether such misreport can be prevented depends on the underlying network
structure. For instance, if an agent i has a neighbor j who is only connected to i, both

1Thus, we can view our framework as a specific case of interdependent valuations, i.e. the utility of
an agent depends on the valuations of the others which are not in general known by the agent. (Jehiel
and Moldovanu (2001)).
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agents know that the principal can only rely on the reports of i and j to identify the
productivity of j. This might create a difficulty for the principal to detect the untruthful
report of i and j, since the misreporting about this agent cannot be cross-checked by a
third person. This underscores the importance of the network structure in helping the
principal construct a mechanism that meets her objective. There are two natural ques-
tions in this setting. First, identifying which network structures allow for the existence
of an efficient mechanism. Second, identifying such a mechanism when the existence
conditions are met.

The answers to these questions depend heavily on each agent’s beliefs about the
information they lack. Since each department member may not know the characteristics
of all other members but still cares about who receives the good, their decisions are
influenced by their beliefs about unknown factors. For example, if an agent suspects that
there may be a highly productive member they are unaware of, they might choose to
underreport the productivity of a known colleague to increase the likelihood that this
potentially more productive, unknown agent will be assigned the role.

The typical approach for modeling this situation assumes a common belief that each
agent’s productivity is drawn from a known distribution shared by all agents. This
setting allows agents to compute the expected productivity of each agent, and to know
that the others also have the same expectations as themselves. While this assumption
simplifies the model considerably, it is restrictive and may not accurately reflect real-
world scenarios, where agents often have different perceptions of how productive others
are likely to be. Alternatively, a belief-free approach requires the existence of an efficient
mechanism such that for any belief structure, all strategy profiles that can emerge as a
Bayes-Nash equilibrium must be efficient. This approach necessitates not only to consider
the setting that each agent might possess different expected productivity on the same
agent, but also to model an extensive belief hierarchy for each agent—namely, beliefs
about others’ productivities, beliefs about others’ beliefs about productivities, and so
on.2 This approach is much more demanding and, therefore, only applicable in limited
contexts,3 though it offers robustness to variations in belief structures.

Constructing a mechanism that identifies agents’ productivities regardless of belief
structure is challenging; however, the network helps to reduce the uncertainty agents
face, making the setting less dependent on specific beliefs and thus opening up the pos-
sibility of belief-free efficiency. For instance, an agent connected to many others has
access to more comprehensive information. If such agent exists, then this can help the
principal in identifying agents’ valuations, as the principal can rely more on the mes-
sages of well-connected agents, whose decisions depend less on belief compared to agents

2This is the characterization suggested by the seminal contribution of Harsanyi (1967) on the incom-
plete information games.

3See for instance Bergemann and Morris (2009) and Ollár and Penta (2017).
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with limited information. However, a well-connected agent might also use this position
strategically, providing misleading information to secure the good for himself, even if
this contradicts the principal’s objective. Thus, the interplay between network structure
and the feasibility of accurately identifying agents’ true productivities is complex and
nuanced.

Our first result establishes the necessary and sufficient conditions for the existence of
a mechanism that allocates the good to the most productive agent in any equilibrium,
independent of each agent’s belief hierarchy—a property we refer to as robust efficiency.4

This concept is known to be stronger than several well-known solution concepts employed
in the mechanism design literature.5 We show that a robustly efficient mechanism exists
if and only if the network is such that there are at least 2 agents who are connected to
everybody in the community.

The intuition behind the necessary condition lies in the fact that each agent who is
not connected to everyone may hold beliefs that an agent unknown to him has the highest
productivity, and that others will send a message so that this agent receives the good.
Since he believes that this unseen agent is the most productive, he has no incentive to
change his message from the one which allows this unseen agent to obtain the good (even
if it is untruthful), as he expects that allocating the good to this agent maximizes his
utility. Consequently, even if he observes a more productive agent in his neighborhood, he
might still send a message claiming that the central agent who is connected to everyone
is more productive than this neighbor, assuming that the good will ultimately go to the
most productive agent he cannot observe. This dynamic can incentivize the center to
misrepresent his productivity in hopes of securing the good for himself, even if he is
aware of a more productive agent.

We then prove sufficiency by exhibiting an efficient mechanism when the network has
at least two centers. The efficient mechanism we construct to prove sufficiency oper-
ates within a simple framework that applies to a community with two agents who know
each other. If both agents’ messages contradict each other—each claiming to be more
productive—the mechanism partially withholds the good, creating an allocation where
the higher agent prefers partial allocation over the entire good going to the lower agent,
but the lower agent prefers the entire good going to the higher agent over partial allo-

4The fact that all equibria must yield an efficient allocation is called full implementation, contrary to
partial implementation which is satisfied when there is an equilibrium which is efficient but which does
not exclude the existence of inefficient equilibria.

5This concept includes Bayesian implementability of Jackson (1991), since robust efficiency requires
that for all belief structures, the mechanism is efficient in Bayes-Nash equilibrium. Moreover, Bergemann
and Morris (2011) show that if a social choice function is robustly implementable, then it is ex-post
incentive compatible. For ex-post implementation, see Crémer and McLean (1985), Bergemann and
Morris (2008), and Feng et al. (2023).
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cation. This balance depends on burning just the right amount of the good: too much,
and both agents may collude untruthfully since the partial allocation is not attractive
enough for the higher agent to deviate from the allocation giving the entire good to the
lower; too little, and the contradiction might persist since the partial allocation is more
attractive than the efficient allocation for the lower. Without monetary transfers, the
principal cannot individually reward or punish agents, as the good benefits both through
externalities. This framework ensures that when there are at least 2 agents connected to
everyone, the less productive of the two has an incentive to report truthfully, given the
positive externalities. This mechanism extends to a general network structure, with the
two centers facing incentives similar as those just exposed.

Our necessity result restricts the set of networks to which our framework can be ap-
plied. This limitation arises from the demanding robustness requirement, which may lead
agents to adopt untruthful strategies under the belief that their honesty will not impact
the final allocation. Hence, we propose a weaker form of robustness to belief structures,
assuming that agents do not use weakly dominated strategies—a concept we term weakly
robust efficiency. Under this slightly relaxed criterion, we show that a weakly robustly
efficient mechanism exists, provided there is at least one agent connected to everyone in
the network. The importance of such network structures has been highlighted in multi-
ple studies on social networks, and our work contributes another key implication of this
structure.6 Furthermore, we extend our concept of robustness to sequential mechanisms,
showing that an efficient mechanism exists if the network can be divided into two sets
of agents where each agent in one set is connected to every agent in the other set. This
condition includes the networks for which a weakly robustly efficient mechanism exists.

This paper contributes to several areas of literature. First, it adds to recent work
on mechanism design in information networks, where agents know their own types and
those of their connected neighbors, and the principal designs a mechanism to gather this
information to achieve her objective. In Bloch and Olckers (2022), the principal’s goal is
to create a complete ranking of agents without monetary transfer, with agents’ utilities
increasing based on their assigned ranks. They show that a necessary and sufficient
condition for ex-post incentive compatible mechanism to exist is that every pair of agents
shares a common neighbor. Besides the differing solution concept—ex-post incentive
compatibility—which allows for inefficient equilibria, the key difference between our work
and theirs is the role of externalities (hence, interdependent valuations): in their setting,
agents only care about their own rank, fitting a private values framework.

Baumann (2023) examines full implementation in settings where goods are allocated
6For instance, in the network formation game of Bala and Goyal (2000), the star network is one of

the 2 equilibria which might emerge in one of their models, as well as the unique efficient network for a
wide range of parameters.
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without monetary transfers. Here, the principal aims to allocate the good to the agent
with the highest valuation, drawn from a distribution common to all agents. This model,
based on private values, differs from ours with respect to externalities. Additionally, their
framework assumes common knowledge of the distribution, allowing the use of standard
Bayes-Nash implementation. Their study also relies on partially verifiable information,
where agents have limited capacity to lie, and on lexicographic preferences that favor
truth-telling when payoffs are equal—an aspect we do not incorporate in our model.

Secondly, this paper advances implementation theory and mechanism design in en-
vironments with interdependent valuations, particularly in contexts without monetary
transfers. In these settings, agents’ utility depends on the valuations of others, with each
agent’s valuation typically unknown to the others, creating an incomplete information
game. Previous work on this topic has largely focused on allocations with monetary
transfers (Crémer and McLean (1985), Jehiel and Moldovanu (2001)) and, more recently,
on allocations without transfers (Bhaskar and Sadler (2019), Goldlücke and Tröger (2020),
Feng et al. (2023)). Our study extends this literature by examining how specific network
structures can ensure the existence of an efficient mechanism. In this context, outcomes
rely heavily on assumptions about common knowledge, which shape the beliefs that agents
hold. The standard approach assumes that agents have a common prior on the types of
others, framing the situation as a Bayes-Nash game. Although this method provides key
insights, the assumption of common knowledge does not take into account the complex
belief architectures that agents might hold.

To address this point, Bergemann and Morris (2005) introduce the concept of robust
implementation, which requires that all Bayes-Nash equilibria lead to efficient allocations
across any belief space. This eliminates the need for common knowledge, as it guarantees
efficient allocation regardless of the agents’ beliefs. Bergemann and Morris (2009) estab-
lish necessary and sufficient conditions for the existence of such mechanisms; however,
due to the allocative externalities that are present in our model, their framework does
not cover our setting.7 In a context where monetary transfers are allowed, Ollár and
Penta (2017) address a related problem by providing conditions for an efficient transfer
scheme to exist based on belief restrictions concerning the moments of the distributions
from which each agent’s valuation is drawn. Our contribution is to present a novel ap-
proach to achieving robust efficiency by leveraging network structures where agents have
information about some of their peers, without imposing any belief restrictions and with-
out relying on monetary transfers. Instead, we focus on the network structure and the
positive externalities that align the incentives of the principal and the agents. It is im-
portant to note that we are not the first to utilize externalities as a means of incentive

7They assume that the utility of an agent depends only on the aggregate of the valuations, i.e. there
exists an aggregator hi(·) which gives a scalar depending on the realized valuation profiles.
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alignment. For instance, Bhaskar and Sadler (2019) discuss the conditions for a second-
best optimal mechanism and, using positive externalities, proposes an optimal mechanism
in a Bayes-Nash equilibrium under a common prior, where agents’ valuations are private
information which, in our setting, amounts to considering that the network is empty.
Our value-added regarding the use of the externalities is the following: by introducing
the information network into such context, not only the first best is possible for some
networks, but also with stronger solution concept which does not assume any common
knowledge.

2 Model

A principal has 1 unit of divisible good to allocate among n agents. Let N = {1, · · · , n}
with n ≥ 2 be the set of all agents in the community. We denote the amount of good
allocated to agent i as xi, and the allocation profile as x = (x1, · · · , xn) ∈ X. We require
that for all i ∈ N , xi ≥ 0, and

∑
i∈N xi ≤ 1. This implies that some of the good may

not be allocated, allowing for money burning, which means the principal can choose not
to allocate a portion of the good. The divisibility of the good can be interpreted in two
ways: either as the inherent nature of the good itself (e.g., if the good to be allocated is
a budget sum) or as the probability of allocating an indivisible good to an agent (e.g.,
the allocation of a single task or prize).

Each agent derives utility from the allocation profile. We take the formulation of
Bhaskar and Sadler (2019), where the (ex-post) utility function for agent i is defined as
follows:

ui(x;v) = (1− α)vixi + α
∑
j∈N

vjxj

where vi ∈ [0, 1] is the valuation of agent i, drawn from an unknown distribution, and
α ∈ (0, 1) is the externality factor.8 The term vi represents the constant marginal utility
of the good allocated to agent i, indicating either the agent’s productivity or the degree
to which each agent values the good. We denote the valuation profile as v = (v1, · · · , vn).
We assume that vi ̸= vj for any i ̸= j.

The principal’s objective is to allocate the entire good to the agent with the highest
valuation. For instance, in the context of task allocation, this means assigning the task to
the most productive agent. In the case of a simple allocation of a single good, the principal
aims to allocate it to the agent who values it the most. We say that the allocation x is

8We assume that α depends neither on i nor on j. This represents a situation, for instance, where
innovations are published through patents, and all firms can access them by paying a cost. Similarly,
in an assignment setting, the benefit of a new manager is greater than the benefit that each individual
department member receives which is considered as the same for everyone.
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efficient for a given realization v if xi = 1 for i such that i = argmaxi′∈N vi′ and xj = 0

otherwise.
Given the principal’s objective, the externality factor α represents how closely aligned

the incentives are between the principal and the agents.9 When α = 1, the utility function
of an agent is simply

∑
j∈N vjxj which is maximized when we allocate the entire good

to the agent with the highest valuation. In this case, the efficient allocation maximizes
the utility function of each agent. Conversely, as α decreases, the weight of the first
term in the utility function increases, suggesting that the significance of each agent’s own
allocation becomes more pronounced. In the case, the efficient allocation may appear less
appealing to agents whose valuations are not the highest, as they may prefer receiving
the good for themselves.

The externality factor α can be interpreted in various ways depending on the context.
For instance, consider a scenario where the good being allocated is the assignment of
a project manager to a team member. Once the project manager is assigned and the
project is completed, utility is realized based on the individual reward given only to
the manager, alongside a group reward distributed to all team members. In this case,
α represents the relative magnitude of the group reward compared to the individual
reward. A larger α indicates that the group reward is more attractive than the individual
reward, leading agents to prefer that another agent with a high valuation receives the
good, thereby benefiting from the group reward, if such an agent exists. When α = 1, it
suggests that there is no individual reward, only the group reward, meaning maximizing
the group reward is equivalent to maximizing the utility of each agent. Conversely, if
α = 1, it indicates that rewards are given solely to the individual who obtains the good,
in this case, the project manager. In another context, when the principal aims to allocate
the good to the individual who values it most, α can be seen as a measure of altruism,
reflecting that the material benefit for agent i is vixi. Furthermore, considering that the
second term in the utility function represents total welfare, α can also be interpreted as
a preference for efficiency, as discussed in various studies in experimental economics.10

We assume that the principal does not know the valuation of any agent, while each
agent is aware of his own valuation as well as the valuations of his neighbors within a
network. The network is represented by a matrix G = (gij)i,j∈N , where gij = 1 indicates
that agent i knows vj. We further assume that the network is undirected, meaning gij =
gji. LetNi denote the set of neighbors of agent i.11 The information possessed by agent i is
described by θi(v,G) = (vi, (vj)j∈Ni

). For sake of simplicity, we omit the notation for the
dependence of the information type on the network and write θi = θi(v,G) when there is

9See also Bhaskar and Sadler (2019)
10See for instance Charness and Rabin (2002) or Engelmann and Strobel (2004).
11Crémer and McLean (1985) study the optimal auction design (i.e. with monetary transfer) where

agents know the valuations of any other agent, i.e. where the network is complete.
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no risk of confusion. The network G and the externality factor α are common knowledge
among agents and the principal. The structure of the utility function, combined with the
fact that an agent does not have complete knowledge of everyone’s valuations, implies
that an agent lacks full information about his utility function ex-ante.12

Mechanism and belief space
The principal’s objective is to achieve an efficient allocation for any realization of val-
uation profile v, which is unknown for her. To accomplish this, the principal proposes
and commits to a mechanism, defined by the message space and the allocation rule.
A mechanism is a pair ((Mi)i∈N ,x(·)), where Mi is the message space for agent i, and
x : Πi∈NMi → X is the allocation rule. In essence, the principal defines the set of mes-
sages that each agent can send to her, and the allocation profile is determined according
to the allocation rule x(·) based on the message profile submitted by the agents.

From the agents’ perspective, each mechanism induces a game form, in which the
strategy set is the message space Mi, and the ex-post payoff function is defined as follows:

πi(mi,m−i;v) = ui(x(mi,m−i);v)

We consider a direct mechanism,13 where the message space is defined as Mi = Θi(G) for
all i. This means that each agent reports only the information they possess, specifically
their own valuation and the valuations of their neighbors.

Since some parameters of the payoff function of agent i is unknown to himself in
general, a mechanism constitutes a game of incomplete information. Consequently, the
degree of common knowledge among agents and the principal becomes a crucial aspect
of the model. The standard approach often assumes a Bayes-Nash equilibrium, where
agents know that each valuation is drawn from a distribution common to all. However,
this reliance on a common prior is often seen as overly restrictive, as it presumes uniform
knowledge across agents. In many scenarios our model considers, it may be unrealistic
to assume such common knowledge—for instance, it would be unlikely for all agents to
have exact information about the distribution of each other’s productivity. Avoiding this
assumption of common knowledge, however, necessitates modeling the entire hierarchy
of beliefs. This means incorporating not only each agent’s beliefs about other agents’

12In implementation theory literature, this scenario is known as interdependent valuations, where an
agent’s utility depends on the types of other agents, which is generally assumed to be private information.
See, for example, Jehiel and Moldovanu (2001).

13Some studies on implementation theory and mechanism design take the indirect mechanism ap-
proach to eliminate the inefficient allocation profile from the set of equilibria of the game induced by the
mechanism (see for instance Palfrey and Srivastava (1989) or Bergemann and Morris (2008)). However,
this often involves an augmented mechanism that uses variants of integer games as a device to eliminate
inefficient allocations. Not only are integer games considered unrealistic to implement, but they might
also lack any equilibrium due to the message space being infinite.
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valuations but also beliefs about others’ beliefs on those valuations, and so forth, as
outlined by Harsanyi (1967). This recursive belief structure adds complexity but more
accurately reflects situations with diverse information distributions.

3 Robustly efficient mechanism

In this paper, we take the approach of robust implementation proposed by Bergemann
and Morris (2005) adapted to information networks. This robust concept ensures that
the mechanism leads to an efficient allocation for any message profile that could be
supported as a Bayes-Nash equilibrium under some belief hierarchy. In other words, it is
robust against any possible configuration of beliefs and higher-order beliefs among agents.
However, verifying Bayes-Nash equilibrium outcomes across all possible belief spaces is
impractical. Instead, we use an alternative method that achieves the same result. This
method involves iteratively eliminating strategies that are never a best response, which
is effectively equivalent to assessing the Bayes-Nash equilibrium across all belief spaces.

To introduce this approach, we first define the expected payoff and the best-responses.
Agent i’s expected payoff depends on his conjecture conditional on his type, which is a
joint probability distribution over the messages and valuations of the other agents. We
require that the set of feasible conditional conjectures of an agent must be consistent with
what the agent observes, namely, µi(· | θi) ∈ Ci(θi), where

Ci(θi) = {µi ∈ ∆(M−i, V−i) |µ−i({(m−i, v
′
−i) | v′j = vj for j ∈ Ni}) = 1}

where vj is the true valuation of agent j. Given his conjecture µi(· | θi) ∈ Ci(θi), the
expected payoff when agent i adopts a message mi is

Eπi(mi; θi, µi) =

∫
M−i×V−i

ui(x(mi,m−i);v)dµi(m−i, v−i|θi)

and the best responses are

BRi(θi, µi) = argmaxm′
i∈Mi

Eπi(m
′
i; θi, µi)

This formulation allows for uncertainty not only about other agents’ valuations but also
about the strategies they may choose. In the standard framework for games with incom-
plete information, strategies are functions of realized types, typically denoted by si(θi),
making best responses functions of others’ strategies. To see how this applies within
our framework, suppose other agents’ strategies s−i(·) are fixed. Then, agent i’s conjec-
ture assigns positive probability only to pairs (m−i, v−i) such that m−i = s−i(θ−i(v)),
and such that the conjecture is consistent with the common prior. This approach thus
models agent i’s best response based on his conjecture over both messages and values of
others, maintaining consistency with fixed strategies and prior beliefs.
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The concept of robust efficiency is defined based on the iterative elimination of never-
best responses for each agent given his information.14 Let S0

i =Mi and define inductively

Sk
i (θi) =

{
mi ∈Mi

∣∣∣∣∃µi ∈ Ci(θi) s.t.

mi ∈ BRi(θi, µi) and µi

(
{(m−i, v

′
−i) |m−i ∈ Sk−1

−i (θ−i(v
′))}|θi

)
= 1

}
and let Si(θi) = ∩k≥0S

k
i (θi). Moreover, we say that a message profile m is rationalizable

if m ∈ Πi∈N Si(θi).

Definition 1 (Robust efficiency). Given the network G, the allocation rule x(·) is robustly
efficient if for all v, θ ∈ Πi∈N Si(θi) and x(m) is efficient for all m ∈ Πi∈N Si(θi).

Sk
i (θi) is the set of all messages that survive the k-th round of elimination. In order

for a strategy mi to survive the k-th round of elimination given his observation θi, mi

must be a best response for some conjecture consistent with what he observes and which
puts a positive probability only on the pairs (m−i, v

′
−i) such that the strategy profile

m−i survives the (k − 1)-th round of elimination for all j ̸= i, when he believes that the
valuations of others are v′−i. We can see that for all k, Sk

i (θi) ⊆ Sk−1
i (θi) which guarantees

that this process ends after certain number of rounds, i.e. there exists k∗ such that
Sk∗
i (θi) = Sk∗+1

i (θi) for all i.15 It is known that a message profile is in Πi∈NSi(θi) if and
only if it can be played as an Bayes-Nash equilibrium in certain beliefs of agents.16 Thus,
robust efficiency requires that, regardless of the agents’ beliefs—including all higher-order
beliefs—the mechanism consistently results in an efficient allocation at the Bayes-Nash
equilibrium. This invariance to belief variations is the essence of its "robust" nature.

To find a robustly efficient mechanism, it is necessary that all message profiles sur-
viving the iterative elimination process yield an efficient allocation under the mechanism.
This requires not only ensuring that among the surviving message profiles, there ex-
ists at least one that leads to an efficient allocation (partial implementation), but also
that all inefficient message profiles are removed from the set of possible outcomes (full
implementation).

Example 1. (Partial and full implementation) Assume that there are 2 agents, 1
and 2, connected to each other, hence they have complete information. The mechanism
defines a message profile m = (m1,m2), where mi = (m1

i ,m
2
i ) for i ∈ {1, 2}, in which

14This concept is a special case of ∆-rationalizability proposed by Battigalli and Siniscalchi (2003).
15We can see that by redefining this process in terms of an operator

bi(S, θi) = {mi ∈ Mi | ∃µi ∈ Ci(θi) s.t. mi ∈ BRi(θi, µi) and µi ({(m−i, v−i) |m−i ∈ S−i(θ−i)}) = 1}

which is monotone in the set inclusion ordering, hence to which the Tarski’s fixed point theorem is
applicable.

16See Proposition 1 of Bergemann and Morris (2011).
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mj
i represents the message of agent i about the valuation of agent j. The allocation rule

x(m) = (x1(m), x2(m)) is defined as follows:

• If m1
1 = m1

2 and m2
1 = m2

2, then x1(m) = 1 if m1
1 > m2

1, and x2(m) = 1 if m1
1 < m2

1.
• In any other case, x1(m) = x2(m) = 0.

This setup attempts to enforce efficiency by allocating the good only when the agents’
messages are consistent, and it introduces a strong incentive for agents to be truthful. The
mechanism includes an efficient profile where both agents report their true valuations,
resulting in the allocation of the good to the agent with the higher valuation. However,
the mechanism also allows for an inefficient outcome: both agents may send consistent
but incorrect messages that still satisfy the consistency condition (i.e. m1 = m2). This
possibility of a "consistent but wrong" message profile means that the good could be
allocated based on incorrect information, failing to achieve efficiency.

For instance, let (v1, v2) with v1 > v2 be the true valuation profile, so that the efficient
allocation is x1 = 1. Consider a message profile m such that mj

1 = mj
2 for j ∈ {1, 2}, and

m1
i < m2

i for i ∈ {1, 2}. This message profile indeed survives the iterative elimination
because for both agents, this (untruthful) message profile is the best response to the same
(untruthful) message of the other agent.

As a result, while this mechanism includes an efficient allocation profile in the ra-
tionalizable set, it is not robustly efficient. Robust efficiency requires that all surviving
message profiles (those that can be supported as rationalizable outcomes) yield an effi-
cient allocation. The existence of inefficient outcomes—consistent yet incorrect message
profiles—demonstrates that this mechanism does not meet the robust efficiency criterion.

This example illustrates a key point: achieving robust efficiency requires more than
just penalizing agents for sending inconsistent messages. The mechanism must also pro-
vide incentives for agents to send truthful messages, even when doing so could result in
an inconsistent message profile.

The primary challenge here stems from the lack of monetary transfers. In settings
with monetary transfers, the principal could design a transfer scheme to reward agents
individually, ensuring that one agent’s reward does not impact the utility of others. How-
ever, without monetary transfers, the principal’s only available punitive tool is to burn
the good. This approach is inherently limited, as burning the good acts as a collective
punishment. Because of the positive externalities in our setting, agents prefer that the
good is allocated to someone—even if it is not themselves—rather than being destroyed.

Despite this difficulty, the following lemma shows that in 2 agents case there exists a
simple allocation rule which rewards the agent with the higher valuation and punish the
lower agent, so that the untruthful consistent message profiles are eliminated from the
set of rationalizable message profiles.

12



m2

m1
2 > m2

2 m2
2 > m1

2

m1

m1
1 > m2

1 (1, 0)
(
x
(1,2)
1 , x

(1,2)
2

)
m2

1 > m1
1

(
x
(2,1)
1 , x

(2,1)
2

)
(0, 1)

Table 1: 2-agent mechanism

Lemma 1. Assume that N = {1, 2} and they are connected. The direct mechanism
(M1,M2,x) such that

m1
1 > m2

1 and m1
2 > m2

2 ⇒ (x1, x2) = (1, 0)

m1
1 < m2

1 and m1
2 < m2

2 ⇒ (x1, x2) = (0, 1)

Otherwise ⇒ (x1, x2) =

(
α

1 + α
,

α

1 + α

)
is robustly efficient.

Proof. All proofs are relegated to the appendix.

To illustrate the proof sketch of this lemma, we can examine the setup in Table 1.
Inside the square is the allocation profile for each message profile. The payoff for each
allocation profile is the following π1(x

(1,2)
1 , x

(1,2)
2 ) = x

(1,2)
1 v1 +αx

(1,2)
2 v2 and π1(0, 1) = αv2.

Hence, by taking the difference, we have

π1(x
(1,2)
1 , x

(1,2)
2 )− π1(0, 1) = x

(1,2)
1 v1 − α(1− x

(1,2)
2 )v2

We need π1(x
(1,2)
1 , x

(1,2)
2 ) > π1(0, 1) if and only if v1 > v2. Hence

x
(1,2)
1 = α(1− x

(1,2)
2 ) (1)

By the same argument for agent 2, we obtain

π2(x
(1,2)
1 , x

(1,2)
2 )− π2(1, 0) = x

(1,2)
2 v2 − α(1− x

(1,2)
1 )v1

We need π2(x
(1,2)
1 , x

(1,2)
2 ) > π2(1, 0) if and only if v1 < v2. Hence

x
(1,2)
2 = α(1− x

(1,2)
1 ) (2)

We can see that the only allocation profile which satisfies (1) and (2) is indeed x
(1,2)
1 =

x
(1,2)
2 = α

1+α
. Besides, it is less restrictive for (x(2,1)1 , x

(2,1)
2 ) can be anything low enough to

have π1(x
(2,1)
1 , x

(2,1)
2 ) < π1(1, 0) if v1 > v2, and π2(x

(2,1)
1 , x

(2,1)
2 ) < π1(0, 1) if v1 < v2. These

are also satisfied by the allocation ( α
1+α

, α
1+α

) although it is not necessary.
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The allocation of α
1+α

to both agents is more appealing for the higher-valued agent than
allocating everything to the lower-valued agent, which occurs in the case of a consistent
but untruthful message profile. Additionally, this allocation is less attractive for the
lower-valued agent compared to the efficient allocation, where everything is given to the
higher-valued agent. Note that as α increases, the amount of money burning decreases.
This relationship illustrates that α serves as a measure of the degree of incentive alignment
between the principal and the agents.

Using the same logic in larger networks with more than two agents, we can construct
a robustly efficient mechanism even if not every agent is directly connected to every other
agent. In fact, it suffices to have two agents within the network who are connected to all
other agents. Furthermore, we can demonstrate that this particular network structure is
also necessary for the existence of a robustly efficient mechanism.

Theorem 1. A robustly efficient mechanism exists if and only if the network is such that
there are at least 2 agents who are connected to everyone.

We can understand the necessity of this network structure by considering the impli-
cations of having only one central agent connected to all other agents, and by assuming
that a robustly efficient mechanism exists. In this scenario, since every agent except the
central one has at least one other agent whom he does not observe, each agent might
believe that the unseen agent has the highest valuation, and believe that all other agents
send a message which results in the allocation of the entire good to this unseen agent.
To simplify the argument, let us consider an agent i who is not the central agent and
who holds such a belief. We will assume that agent i observes that a neighbor j has
the highest valuation among the set of neighbors, which necessarily includes the central
agent. However, as long as agent i believes that there is an unobserved agent with the
highest valuation, and believes that everyone sends messages that result in this agent
receiving the entire good, we can show that agent i has no incentive to report that agent
j has a higher valuation than the central agent. This is because such a report should
not change the allocation in favor of agent i, provided that the mechanism is robustly
efficient. If this were the case, it would imply that the good should be allocated to agent
i by some deviation of agent i, since he believes that the initial allocation is efficient.17

This contradicts the concept of robust efficiency, as it suggests that agent i can change
his report to benefit himself, even though the initial message profile allocating the good
to the unseen agent was indeed the efficient allocation. Hence, we can always find a belief
for agent i such that the untruthful message stating that the valuation of the central
agent is higher than that of agent j is a best response for some strategy profile. Since
this holds true for any non-central agent, the message profile indicating that the central

17For agent i, any allocation that does not allocate the good to him is worse than the efficient allocation.

14



agent has the highest valuation is always rationalizable, contradicting the assumption
that the mechanism is robustly efficient.

We prove the sufficiency by constructing a specific mechanism that is robustly effi-
cient. This mechanism employs the same logic as the mechanism in Lemma 1, where the
two agents in question are those who are connected to everyone else in the network. The
mechanism utilizes only the messages from these two agents. When there is an inconsis-
tency in the claims made by both agents regarding who has the highest valuation, the
mechanism allocates α

1+α
to both agents. This allocation structure makes the distribution

of the entire good to the agent with the higher valuation more attractive for the agent
with the lower valuation. The difference from Lemma 1 arises when there is another
agent who has a higher valuation than both of them. In this case, the central agent with
the lower valuation would prefer that this agent obtains the good rather than allowing
the central agent who has the higher valuation among the two centers to obtain it.

Example 2. We illustrate the necessity of having a network with at least two agents
connected to everyone for the existence of a robustly efficient mechanism. We do this by
examining a network where there is only one agent in the center and demonstrating that
no robustly efficient mechanism can exist in such a configuration.

Consider the network in Figure 1, where there is agent 1 who is connected to everyone,
and take the valuation profile such that v2 > v1 > v3 > v4. We will see that for any agent

Figure 1: Only one agent is connected to everyone.

who observes agents 1 and 2, the message such that m1
i > m2

i cannot be eliminated, if
we assume that there exists a robustly efficient mechanism. Let assume that there exists
a robustly efficient mechanism, and let us take one of them.

Let us first take the agent 2’s perspective. Since agent 2 does not observe agent 4,
he can have a conjecture such that v4 is the highest and αv4 > v2,18 and all other agents
would send untruthful messages but consistent to each other, and tell that the valuation
profile is v4 > v1 > v2 > v3. Since the mechanism is efficient, if everyone—including

18This implies that agent 2 prefers that agent 4 obtains the good rather than obtaining by himself.
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agent 2—sends consistent messages telling that the valuation profile is v4 > v1 > v2 > v3,
the mechanism must allocate the entire good to agent 4. Furthermore, given agent 2’s
beliefs, he has no incentive to deviate from this allocation, as he believes that it is more
beneficial for him that agent 4 obtains the good. Therefore, for agent 2, sending the
untruthful message telling that v1 > v2 can be a best response under certain conjectures.

Agent 3, who observes that agent 2 has indeed a higher valuation than agent 1, may
also send an untruthful message in certain conjectures, specifically that agent 4 has the
highest valuation and everyone sends consistent message telling that v4 > v1 > v2 > v3.
In this case, exactly in the same way as in the case of agent 2, agent 3 does not have
any incentive to deviate from this allocation since the good is allocated to agent 4, who
is perceived as having the highest valuation according to agent 3’s conjecture.

Given that agent 2 and 3 may send an untruthful message asserting that v1 > v2, and
agent 4 may always send a truthful message indicating that v1 > v4, agent 1 might exploit
these circumstances to send an untruthful message claiming that he has the highest
valuation. If this occurs, the mechanism must allocate the entire good to agent 1, as
everyone reports that v1 is the highest. This situation implies that the mechanism is
not robustly efficient, since in the true valuation profile, v2 is actually the highest, and
therefore the whole good should be allocated to agent 2.

4 Mechanism with weak robustness

The impossibility of a robustly efficient mechanism in networks without at least two
agents who are connected to everyone arises from the fact that untruthful messages
may constitute a best response in a weak sense, meaning they yield at most the same
allocation as truthful messages for certain message profiles of other agents. This limitation
significantly constrains the types of networks in which a robustly efficient mechanism
exists. To expand the range of network structures for which we can construct an efficient
mechanism, we slightly relax the definition of robustness. This new concept is still based
on the iterative elimination of never-best responses; however, in each round of elimination,
we also remove messages that are weakly dominated.

As in the previous section, let T 0
i =Mi and define inductively

T k
i (θi) =

{
mi ∈Mi

∣∣∣∣ ∃µi ∈ Ci(θi) s.t.

µi(m−i, v
′
−i | θi) > 0 for all m−i ∈ T k−1

−i (θ−i(v
′)),

µi({(m−i, v
′
−i) |m−i ∈ T k−1

−i (θ−i(v
′))} | θi) = 1, and mi ∈ BRi(θi, µi)

}
and let Ti(θi) = ∩k≥0T

k
i (θi). We say that a message profile m is weakly rationalizable if

m ∈ Πi∈NTi(θi).
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Definition 2 (Weakly robust efficiency). Given the network G, the allocation rule x(·)
is weakly robustly efficient if for all v, θ is weakly rationalizable and x(m) is efficient for
all m which are weakly rationalizable.

In the iterative elimination process, we assume that each agent has a conjecture with
full support for the messages of others; that is, each agent believes that if a message from
another agent is not eliminated, then it might be used by that agent with strictly positive
probability. This approach eliminates all messages that are weakly dominated in each
round, given that the other agents only use the messages that survived in the previous
round. Unlike the iterative elimination of never-best responses, it is important to note
that convergence of the set is not guaranteed, as this process does not necessarily yield a
monotonic operator within the lattice of set inclusion.

We propose a simple mechanism that is weakly robustly efficient when there is one
agent who is connected to everyone. This mechanism applies to certain networks where
it is known by Theorem 1 that a robustly efficient mechanism does not exist.

Mechanism with one agent in the center (WE mechanism)
Let agent 1 be the central agent who is connected to everyone. Let i∗ = argmaxi ̸=1m

i
1.

• If 1 = argmaxi∈N m
i
1, then

• if ∀i ̸= 1, m1
i > mi

i, then x1 = 1

• otherwise, x1 = xi∗ =
α

1+α
and xi = 0 for all i /∈ {1, i∗}.

• Otherwise,
• if ∀i ̸= 1, m1

i > mi
i, then x1 = 1

• otherwise, xi∗ = 1

Proposition 1. The WE mechanism is weakly robustly efficient. Hence, there exists a
weakly robustly efficient mechanism if there is one agent who is connected to everyone.

For the central agent to obtain the entire good, all other agents must report that the cen-
tral agent has a higher valuation than themselves. If there is another agent who claims to
have a higher valuation than the center when the central agent claims to have the highest
valuation, the mechanism allocates α

1+α
of the good to both the central agent and the

non-central agent identified by the central agent as having the highest valuation among
others. This mechanism incentivizes the central agent to report truthfully. Specifically,
the central agent is discouraged from falsely claiming the highest valuation when he ob-
serves another agent with a higher valuation. This is because the central agent prefers the
allocation where the highest-valuing agent receives the entire good over the alternative,
in which α

1+α
is shared between the highest-valuing agent and the central agent, as shown

in Lemma 1. Note that the central agent has an incentive to report truthfully only in
a weak sense. Regardless of the message sent by the central agent, if all other agents
report that the central agent has a higher valuation than themselves, the central agent
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m3

m1
3 > m3

3 m3
3 > m1

3

m2

m1
2 > m2

2 (1, 0, 0) (β, β, 0)

m2
2 > m1

2 (β, β, 0) (β, β, 0)

(a) m1 : m1
1 > m2

1 > m3
1

m3

m1
3 > m3

3 m3
3 > m1

3

m2

m1
2 > m2

2 (1, 0, 0) (β, 0, β)

m2
2 > m1

2 (β, 0, β) (β, 0, β)

(b) m1 : m1
1 > m3

1 > m2
1

m3

m1
3 > m3

3 m3
3 > m1

3

m2

m1
2 > m2

2 (1, 0, 0) (0, 1, 0)

m2
2 > m1

2 (0, 1, 0) (0, 1, 0)

(c) m1 : m2
1 = maxi∈N mi

1

m3

m1
3 > m3

3 m3
3 > m1

3

m2

m1
2 > m2

2 (1, 0, 0) (0, 0, 1)

m2
2 > m1

2 (0, 0, 1) (0, 0, 1)

(d) m1 : m3
1 = maxi∈N mi

1

Table 2: 3 agents, agent 1 in the center

receives the entire good. Consequently, any untruthful message from the central agent is
only weakly dominated.

We illustrate the mechanism and its incentive scheme in the example below by using
the simple network of 3 agents.

Example 3. Let us consider a network with N = {1, 2, 3}, where g12 = g13 = 1

and g23 = 0. In this configuration, agent 1 is connected to both agents 2 and 3, while
agents 2 and 3 are not connected to each other. Let β := α

1+α
. Table 2 displays the

allocations determined by the mechanism for each message profile. Each panel illustrates
the resulting allocation profile for the messages of agents 2 and 3, corresponding to the
message of agent 1 indicated in the caption. We will demonstrate that for any realization
of the valuation profile, the message profiles that survive the iterative elimination yield
an efficient allocation.

Assume first that the true valuation profile is v1 > v2 > v3 or v1 > v3 > v2. Then, we
can see that for agent 1, m1

1 > m2
1 > m3

1 or m1
1 > m3

1 > m2
1 weakly dominate all other

messages. We can see this by examining each allocation in the table. If both agent 2 and
3 chooses to send the truthful message, i.e. m1

2 > m2
2 and m1

3 > m3
2, then regardless of the

message that agent 1 chooses, the allocation is (1, 0, 0). However, if one of them sends a
wrong message, then the resulting allocation is (β, β, 0) if agent 1 chooses m1

1 > m2
1 > m3

1

as shown in Panel (a), or (0, 1, 0) if m2
1 = maxi∈N m

i
1 as shown in Panel (c). According to

Lemma 1, agent 1 prefers (β, β, 0) to (0, 1, 0) if and only if v1 > v2. On the other hand,
if agent 1 observes that his valuation is not the highest, (w.l.o.g. let the realization be
such that v2 > v1 > v3), then, we find that for agent 1, the message m2

1 = maxi∈N m
i
1

weakly dominates all other messages. This is because agent 1 prefers (0, 1, 0) to (β, β, 0)

if and only if v2 > v1, as established in Lemma 1.
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Furthermore, considering the perspective of agent 2, if the true valuation profile is
such that v2 > v1 > v3, he only observes that his valuation is higher than agent 1,
but he does not observe agent 3. Consequently, agent 2 cannot determine whether for
agent 1, this is m2

1 = maxi∈N m
i
1 which is dominant (which occurs when v2 > v3) or

m3
1 = maxi∈N m

i
1 is dominant (which occurs when v3 > v2). However, in either case, the

weakly dominant strategy for agent 2 is to report truthfully, that is, m2
2 > m1

2. This can
be seen in Panels (c) and (d), where agent 2 weakly prefers the allocations corresponding
to the message m2

2 > m1
2. It is important to note that if m3

1 = maxi∈N m
i
1, it implies that

v3 > v2 > v1.19 Therefore, in this scenario, agent 2 would prefer the allocation (0, 0, 1) to
(1, 0, 0), which leads us to conclude that m2

2 > m1
2 is indeed weakly dominant.

Next, considering agent 3 who observes that v1 > v3, he knows that if v2 > v1, then
agent 1 will choose m2

1 = maxi∈N m
i
1, while agent 2 will choose m2

2 > m1
2. Consequently,

agent 3 understands that his own message does not influence the allocation. On the
other hand, if v1 > v2, it follows that agent 1 must choose either m1

1 > m2
1 > m3

1 or
m1

1 > m3
1 > m2

1. In this scenario, the truthful message m1
3 > m3

3 for agent 3 remains
dominant. This can be seen in Panel (a) which illustrates that agent 3 prefers (1, 0, 0) to
(β, β, 0) when v1 > v2, and from Panel (b) which shows that agent 3 also prefers (1, 0, 0)
to (β, 0, β) when v1 > v3.

As the above example illustrates, the process of iterative elimination begins with the
central agent, who always has a weakly dominated message based on his observations.
This fact allows us to eliminate the possibility of the central agent choosing an untruthful
message to falsely claim that he has the highest valuation. In the context of (strictly)
robust efficiency, the central agent may hold a conjecture that he is certain that others
will send untruthful messages. By preventing this through the elimination of weakly
never-best responses, we can construct a weakly robustly efficient mechanism.

5 Multistage mechanism

In this section, we extend the concept of robust efficiency to a multistage mechanism and
examine whether the set of networks for which a robustly efficient mechanism exists can
be broadened.

5.1 Multistage mechanism: model

We use the formulation of Battigalli and Siniscalchi (2003) to define the rationalizability
on the multistage game, and apply to the mechanism design.

19Otherwise for agent 1, m3
1 = maxi∈N mi

1 would not be dominant.
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We define the standard extensive-form games with observable actions and perfect
recall. Unlike the simultaneous mechanism discussed in previous sections, here the prin-
cipal designs an extensive-form mechanism, denoted by Γ, which includes a set of feasible
histories H and a sequence of action profiles. We use h′ ⊆ h to indicate that h′ is a sub-
history of h, meaning h′ is an initial subsequence of h. We denote the terminal history
as h and the set of all terminal histories as Z. At each non-terminal history h, an agent
is asked to choose an action from the set Ai(h), with |Ai(h)| > 1 if agent i is active at
that point.

Each terminal history is associated with an allocation defined by an allocation rule
x : Z → X . The (ex-post) utility function remains the same as in previous sections,
which we present here:

ui(x;v) = (1− α)vixi + α
∑
j∈N

vjxj

A message for agent i is a function mi : H → Ai such that mi(h) ∈ Ai(h). Each message
profile m = (mi)i∈N corresponds to a terminal history through a function O : M → Z,
where M = Πi∈NMi represents the set of all message profiles. Thus, we can express the
payoff function of an agent as follows.

πi(mi,m−i;v) = ui(x(O(mi,m−i));v)

We omit the function O(·) and write x(mi,m−i) := x(O(mi,m−i)) when there is no
confusion. As in the previous sections, agents are connected into a network G where
gij = 1 implies that agent i knows the valuation agent j. Besides, we define the set of
message profiles which are consistent with each history h, namely

M(h) = {m ∈M |h is a subhistory of O(m)}

and let Mi(h) be the set of mi which does not prevent the game from reaching the
history h. We also define a system of conditional conjectures µi(· | θi, h) which is a joint
distribution over the messages and valuations of the other agents, conditional on each
information type, and on each history. As in Section 3, the conditional conjecture must
be consistent with what an agent observes, i.e. for all µi(· | θi, h) ∈ Ci(θi). Moreover,
the conjectures of each distinct history are connected via Bayes rule as follows. If h′ is a
subhistory of h′′, then

µi(m−i, v−i|θi, h′) = µi(m−i, v−i|θi, h′′)
∫
V−i

∫
M−i(h′′)

µi(m
′
−i, v

′
−i|θi, h′)dm′

−idv
′
−i

We denote a collection of all such conjectures as D(θi). Given a conjecture µi(· | θi, h) ∈
D(θi), a non-terminal history h, the expected payoff of agent i with information θi when
he plays message mi is

Eπi(mi; θi, µi, h) =

∫
M−i(h)×V−i

ui(x(mi,m−i);v)dµi(m−i, v−i|θi, h)
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The rationalizability on the extensive form mechanism is defines by the sequential ratio-
nality. Given an information type θi and a conjecture µi, a message m∗

i is sequentially
rational if for all h ∈ H

Eπi(m
∗
i ; θi, µi, h) ≥ Eπi(mi; θi, µi, h)

for all mi. Let Ri(θi, µi) be the set of all sequentially rational messages given θi and µi.
The process of iterative elimination works similarly as the one in Section 4. Let

T 0
i =Mi, and define inductively

T k
i (θi) =

{
mi ∈Mi

∣∣∣∣∃µi ∈ Ci(θi) s.t. for all h,

µi(m−i, v
′
−i | θi, h) > 0 for all m−i ∈ T k−1

−i (θ−i(v
′)) ∩M−i(h),

µi({(m−i, v
′
−i) |m−i ∈ T k−1

−i (θ−i(v
′)) ∩M−i(h)} | θi, h) = 1, and mi ∈ Ri(θi, µi)

}
and let Ti(θi) = ∩k≥0T

k
i (θi). We say that a message profile m is sequentially weakly

rationalizable if m ∈ Πi∈NTi(θi).

Definition 3 (Sequentially weakly robust efficiency). Given the network G, the allocation
rule x(·) is sequentially weakly robustly efficient if for all v, θ is sequentially weakly
rationalizable and x(m) is efficient for all m which are sequentially weakly rationalizable.

5.2 Multistage mechanism: implementation

Now, we propose a mechanism that satisfies sequentially weakly robust efficiency for a
network in which the agents can be partitioned into two sets, with all agents in one set
having knowledge of all agents in the other set.

Assume that a network G is such that the agents can be partitioned into two sets,
L1 and L2, such that for any i ∈ L1 and any j ∈ L2, gij = 1. Without loss of generality,
let L1 = {1, · · · , k}, and L2 = {k + 1, · · · , n}. If there are several such partitions, take
arbitrarily one of them. The numbering of agents can be arbitrary as well.

Multistage mechanism (MS mechanism)
The mechanism is composed by potentially n stages.

At each stage i ∈ {1, · · · , k}, agent i sends a message on the valuations of himself
and his neighbors belonging to the other set than his. Let Ll(m) = {i ∈ L1 |mi

i =

argmaxi′∈Ll′∪{i}m
i′
i } for l ∈ {1, 2} and l′ ̸= l.

• After k stages, if L1(m) = ∅, then xj∗ = 1 for j∗ ∈ L1 such that j∗ = argmaxj∈L2∪{1}m
j
1,

and stop the mechanism.
• Otherwise, go to the stage k + 1.
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• If L2(m) = ∅, then xi∗ = 1 for i∗ ∈ L2 such that i∗ = argmaxi∈L1∪{k+1}m
i
k+1.

• After the stage n, define a bijection ρm1 : L2(m) → {1, · · · , |L2(m)|} which
represents the ordering of agents in L2(m) in the message of agent 1, that is,
ρm1(j) < ρm1(j

′) if and only if mj
1 > mj′

1 .
• The allocation is xi∗ =

(
α

1+α

)|L2(m)| for i∗ ∈ L1 such that i∗ = argmaxi∈L1m
i
k+1,

xj =
(

α
1+α

)ρm1 (j) for all j ∈ L2(m), and xi = 0 for all other agents.

Proposition 2. The MS mechanism is sequentially weakly robustly efficient. Therefore,
a sequentially weakly robustly efficient mechanism exists if the network is such that the
agents can be partitioned into 2 sets where all agents in one set are connected to all agents
in the other set.

The MS mechanism involves selecting an agent from each set, L1 and L2, to assess the
valuations of agents in the other set. This assessment functions similarly to the message
of the center in the WE mechanism described in Section 4. In the WE mechanism, the
center provides information about all other agents without incentive to misreport, as the
agent ranked highest in the center’s message receives a larger share of the good without
affecting the center’s own allocation. In the MS mechanism, an agent in L1 similarly lacks
incentive to misreport valuations of agents in L2, and vice versa. This is because each
agent’s message only influences how the good is distributed among agents in the opposite
set, leaving their own allocation unaffected. Through this setup, any misrepresentation
of valuations across sets is effectively weakly eliminated.

Once all agents in L2 observe the message from agent 1, they learn their own ranking
as well as the ranking of others within L2. They can trust that this ranking is truthful
because any untruthful messages from agent 1 regarding the ranking of agents in L2 were
eliminated . Consequently, agents in L2 are certain that anyone ranked lower genuinely
has a lower valuation. Using this knowledge, we construct a mechanism such that if an
agent in L2 changes his message, it affects only the allocation of agents he observes and
those ranked lower than himself. This setup incentivizes him to be truthful if all agents
ranked below him are also truthful. Since the lowest-ranked agent in L2 affects only the
agents he observes,20 we can, by applying the same method as in Lemma 1, ensure that
this agent has an incentive to report truthfully. This reasoning then extends inductively:
the agent ranked second-lowest knows that the lowest-ranked agent is truthful, which
incentivizes him to be truthful as well, and so forth up the ranking. Therefore, this
implies that if an agent in L1 were to falsely claim that his valuation is higher than all
agents in L2 when it is not, at least one agent in L2 would be motivated to contest this.
As a result, all agents in L1 are motivated to report truthfully. This is because, if an agent
in L2 has a higher valuation than his, then agents in L1 would prefer that this high-value

20This is because there is no one who is ranked lower than him.
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agent receives the entire good, rather than receiving an allocation which shares α
1+α

to
L1 and L2 while the remainder is wasted. This final allocation, which results from any
inconsistency, prevents any agent in L1 from telling the wrong information.

Example 4. Let us take a network of 4 agents in Figure 2 which forms a rectangle.
We apply the MS mechanism to this network to illustrate the incentive scheme of the
mechanism. In this network, the partition is L1 = {1, 2} and L2 = {3, 4}. Let us denote

Figure 2: L1 = {1, 2}, L2 = {3, 4}

β = α
1+α

and let us assume first that the true valuation profile is such that v1 > v2 and
v3 > v4. Each panel of Table 3 illustrates the allocations for each message of 3 and 4,
when both agents 1 and 2 claim that they have a higher valuation than 3 and 4. Panel (a)
shows the allocations when agent 1 announces that agent 3 has a higher valuation than
agent 4, and Panel (b) the contrary. By comparing Panel (a) and (b), we can see that
agent 1 is weakly better off by choosing the message of Panel (a) than choosing Panel (b)
and is strictly better of when agent 3 chooses one of the 2 bottom rows and when agent
4 chooses the right column, i.e. when both agents claim that their valuation is higher
than the one who is ranked the highest among {1, 2} by agent 3. Therefore, the message
of agent 1 in Panel (b) is eliminated.

Then, we can observe that the message of agent 4, who is ranked lower in agent 1’s
ranking, only impacts the allocation of himself and the agent in L1 who is ranked the
highest by agent 3, as agent 4 knows this due to the network structure. By Lemma
1, we already know that sharing the good at the rate of β = α

1+α
between two agents

when there is a contradiction between two agents who know each other incentivizes the
lower-ranked agent to tell the truth. This reasoning applies to this situation as well. In
the valuation profile we assume, where v1 > v4, agent 4 has an incentive to tell the truth
and thus chooses the message in the left column. On the other hand, if v4 > v1, agent 4
will choose the message in the right column.

Once the untruthful message of agent 4 is eliminated, we can also eliminate the un-
truthful message of agent 3. When agent 4 chooses the left message, this is a direct
consequence of Lemma 1, since the message of agent 3 only alters the allocation of those
whom agent 3 knows. When agent 4 chooses the right message, the situation is more
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m4

mi∗
4 > m4

4 m4
4 > mi∗

4

m1
3 > m2

3 > m3
3 (1, 0, 0, 0) (β, 0, 0, β)

m1
3 > m3

3 > m2
3 (1, 0, 0, 0) (β, 0, 0, β)

m3

m2
3 > m1

3 > m3
3 (0, 1, 0, 0) (0, β, 0, β)

m2
3 > m3

3 > m1
3 (0, 1, 0, 0) (0, β, 0, β)

m3
3 > m1

3 > m2
3 (β, 0, β, 0) (β2, 0, β, β2)

m3
3 > m2

3 > m1
3 (0, β, β, 0) (0, β2, β, β2)

(a) m1 : m1
1 > m3

1 > m4
1

m4

mi∗
4 > m4

4 m4
4 > mi∗

4

m1
3 > m2

3 > m3
3 (1, 0, 0, 0) (β, 0, 0, β)

m1
3 > m3

3 > m2
3 (1, 0, 0, 0) (β, 0, 0, β)

m3

m2
3 > m1

3 > m3
3 (0, 1, 0, 0) (0, β, 0, β)

m2
3 > m3

3 > m1
3 (0, 1, 0, 0) (0, β, 0, β)

m3
3 > m1

3 > m2
3 (β, 0, β, 0) (β2, 0, β2, β)

m3
3 > m2

3 > m1
3 (0, β, β, 0) (0, β2, β2, β)

(b) m1 : m1
1 > m4

1 > m3
1

Table 3: Comparative tables for different agent preferences

complex because the message of agent 3 affects the allocation to agent 4, whom he is not
directly connected to. This could lead agent 3 to believe that agent 4 has the highest
valuation, which might cause agent 3 to choose a message different from the two bottom
ones, even though agent 3 observes that his valuation is higher than those of agents 1
and 2, as this could reduce the allocation to agent 4. However, it is important to note
that agent 3 knows that agent 4 has a lower valuation than he does, due to the message
from agent 1. Therefore, if agent 4 chooses the right message, we can show that the al-
location (β2, 0, β, β2) is strictly preferred to (β, 0, 0, β) by agent 3. This preference arises
because agent 3 knows that v3 > v1 and can infer from agent 1’s message that v3 > v4.
Thus, agent 3 has an incentive to truthfully report, further reinforcing the mechanism’s
robustness.

Now, we know that if agent 1 claims that he is higher than both 3 and 4 although it
is not true, then at least one of them would contest him so that he can at most get the
allocation which shares β with one of them. Assume that v3 > v1 > v4. If agent 1 chooses
the message of Panel (a), then he gets (β, 0, β, 0), since agent 3 will tell the truth. By
Lemma 1, we know that agent 1 strictly prefers (0, 0, 1, 0) to (β, 0β, 0). Therefore, agent
1 would not claim that he is higher than both 3 and 4, but let agent 3 obtain the good
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by telling that agent 3 is the highest among everyone that he knows.
Now, we know that if agent 1 claims that he is ranked higher than both agents 3

and 4, although it is not true, then at least one of them will contest this claim, meaning
agent 1 can, at most, get the allocation that shares β with one of them. Assume that
v3 > v1 > v4. If agent 1 chooses the message in Panel (a), then he will receive the
allocation (β, 0, β, 0), because agent 3 will truthfully report. By Lemma 1, we know that
agent 1 strictly prefers the allocation (0, 0, 1, 0) to (β, 0, β, 0). Therefore, agent 1 would
not claim that he is ranked higher than both agents 3 and 4. Instead, he would let agent
3 receive the good by truthfully reporting that agent 3 is the highest among the agents
he knows. This ensures that agent 1 receives a better outcome than if he falsely claims
to be ranked higher than agents 3 and 4, further incentivizing truthful behavior.

6 Conclusion

This paper analyzes robust mechanism design with positive externalities in networks
where agents know the valuations of their neighbors. Instead of following the standard
approach, which restricts agents’ beliefs by assuming common knowledge, we investigate
network structures that allow the principal to identify the agent with the highest valuation
through a mechanism, regardless of the beliefs agents may hold. This approach offers
insights into how the network of an organization should be structured. For example, if a
team manager has the ability to create links between team members, such as through a
buddy program or by controlling desk placements, the network structures proposed in this
paper are the ones the manager should aim for in order to identify the most productive
member when needed.

More broadly, our framework highlights the importance of considering the asymmetry
of information that each agent possesses about others, in order to prevent dishonesty
when agents are asked to report their information. The framework shows that high
concentration of information among a few agents may actually facilitate the elicitation
of truthful information.
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Appendix: Proofs

Proof of Lemma 1: w.l.o.g, let v1 > v2. Let mi be such that m1
i > m2

i and m′
i be such

that m1′
i < m2′

i for i ∈ {1, 2}. We will check that for agent 1, m′
1 is strictly dominated.

We have

π1(m1,m2) = v1

π1(m
′
1,m2) =

α

1 + α
v1 +

α2

1 + α
v2 < v1 if v1 > v2

Moreover,

π1(m1,m
′
2) =

α

1 + α
v1 +

α2

1 + α
v2

π1(m
′
1,m

′
2) = αv2 <

α

1 + α
v1 +

α2

1 + α
v2 if and only if v1 > v2

Therefore, m′
1 is strictly dominated.

Once m′
1 is eliminated, we can check that for agent 2 m′

2 is strictly dominated. We have

π1(m1,m2) = αv1

π1(m1,m
′
2) =

α

1 + α
v1 +

α2

1 + α
v2 < αv1 if and only if v1 > v2

Hence, m′
2 is strictly dominated.

Proof of Theorem 1: Necessity
We prove it by contradiction. Assume that x(·) is robustly efficient, and assume that
there is only one agent who is connected to everyone. Without loss of generality, let
agent 1 be such agent.
Consider two valuation profiles v∗ and v∗∗, with corresponding type profiles θ∗ and θ∗∗,
such that for some agent i, v∗i > v∗1, v∗∗i < v∗∗1 , and v∗∗i′ = v∗i′ for all i′ ̸= i.
We prove that for all j, there exists a valuation profile v̂j such that θ̂jj = θ∗∗j , and
θ̂jj ∈ Sj(θ

∗
j ), hence θ∗∗j ∈ Sj(θ

∗
j ).

Assume by contradiction that there exists an agent j∗ ̸= 1 such that for all v̂j∗ such
that θ̂j

∗

j∗ = θ∗∗j∗ and θ̂j
∗

j∗ /∈ Sj∗(θ
∗
j∗). It implies that there exists a largest k such that

θ̂j
∗

l ∈ Sk
l (θ

∗
l ) for all l ∈ N , and let k̂ be such k. Thus, there exists an agent j such that

for any µj ∈ ∆(M−j × V−j) ∩ Cj(Bj(θ
∗
j )) such that

µj(m−j, v−j) > 0 ⇒ ml ∈ S k̂
l (θl) for all l ̸= j and for θl corresponding to v

there exists m∗
j such that∫

M−j×V−j

uj(x(m
∗
j ,m−j), (v

∗
j , v−j))dµj >

∫
M−j×V−j

uj(x(θ̂
j∗

j ,m−j), (v
∗
j , v−j))dµj
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This remains true by taking µj which puts probability 1 to m−j = θ̂j
∗

−j. Hence, for any
ψj ∈ ∆(V−j) ∩Bj(θ

∗
j ) such that

ψj(v−j) > 0 ⇒ θ̂j
∗

l ∈ S k̂
l (θl) for all l ̸= j and for θl corresponding to v (3)

there exists m∗
j such that∫

V−j

uj(x(m
∗
j , θ̂

j∗

−j), (v
∗
j , v−j))dψj >

∫
V−j

uj(x(θ̂
j∗

j , θ̂
j∗

−j), (v
∗
j , v−j))dψj

Take ψ∗
j ∈ ∆(V−j) ∩Bj(θ

∗
j ) such that ψ∗

j (v
∗
−j) = 1. Then, we have∫

V−j

uj(x(m
∗
j , θ̂

j∗

−j), (v
∗
j , v−j))dψ

∗
j >

∫
V−j

uj(x(θ̂
j∗

j , θ̂
j∗

−j), (v
∗
j , v−j))dψ

∗
j

uj(x(m
∗
j , θ̂

j∗

−j), (v
∗
j , v

∗
−j)) > uj(x(θ̂

j∗

j , θ̂
j∗

−j), (v
∗
j , v

∗
−j)) (4)

Let us denote x̂ = x(m∗
j , θ̂

j∗

−j) and x̂∗ = x(θ̂j
∗

j , θ̂
j∗

−j). Let v̂j∗ be such that v̂j
∗

j′ = maxi′∈N v̂
j∗

i′

and v∗j′ − v̂
j∗

j′ ≥ v∗i − v̂
j∗

i for some agent j′ with gj′j∗ = 0, and v̂j
∗

l = v∗∗l for all l ̸= j′. Since
the mechanism is robustly efficient, we have

x̂∗l =

1, for l = j′

0, otherwise

Therefore, we have

uj(x̂, (v
∗
j , v

∗
−j)) = v∗j x̂j + α

∑
l ̸=j

v∗l x̂l

uj(x̂
∗, (v∗j , v

∗
−j)) = αv∗j′

and then from (4), we have

v∗j x̂j + α
∑

l ̸=i,j,j′

v∗l x̂l + αv∗i x̂i + αv∗j′x̂j′ − αv∗j′ > 0 (5)

Besides, since the mechanism is robustly efficient, we have

uj(x(θ̂
j∗

j , θ̂
j∗

−j), (v̂
j∗

j , v̂
j∗

−j)) ≥ uj(x(m
∗
j , θ̂

j∗

−j), (v̂
j∗

j , v̂
j∗

−j))

v̂j
∗

j x̂j + α
∑
l ̸=j,j′

v̂j
∗

l x̂l + αv̂j
∗

j′ x̂j′ − αv̂j
∗

j′ ≤ 0

Since v̂j
∗

l = v∗∗l for all l ̸= j′, and v∗∗l = v∗l for all l ̸= i, we have

v∗∗j x̂j + α
∑
l ̸=j,j′

v∗∗l x̂l + αv̂j
∗

j′ x̂j′ − αv̂j
∗

j′ ≤ 0

v∗j x̂j + α
∑

l ̸=i,j,j′

v∗l x̂l + αv∗∗i x̂i + αv̂j
∗

j′ x̂j′ − αv̂j
∗

j′ ≤ 0 (6)

29



Therefore, by (5) and (6), we have

α[(v∗i − v∗∗i )x̂i − (v∗j′ − v̂j
∗

j′ )(1− x̂j′)] > 0

This cannot hold if x̂j′ = 1. Since
∑

l∈N x̂l ≤ 1, if x̂j′ = 1, then x̂i = 0, so that

α[(v∗i − v∗∗i )x̂i − (v∗j′ − v̂j
∗

j′ )(1− x̂j′)] = 0

Hence, assume x̂j′ < 1. Then, since v∗j′ − v̂j
∗

j′ ≥ v∗i − v∗∗i > 0, we have

α [(v∗i − v∗∗i )x̂i − (v∗i − v∗∗i )(1− x̂j′)] ≥ α[(v∗i − v∗∗i )x̂i − (v∗j′ − v̂j
∗

j′ )(1− x̂j′)] > 0

α(v∗i − v∗∗i )(x̂i + x̂j′ − 1) > 0

This is a contradiction since x̂i + x̂j′ ≤ 0 by the model.
If such j is i, then let v̂j∗ be such that v̂j

∗

i′ = maxl∈N v̂
j∗

l and α(v∗i′ − v̂j
∗

i′ ) > v∗i − v∗∗i for
an agent i′ with gi′j∗ = 0, and v̂j

∗

l = v∗∗l for all l ̸= i′. By the same argument, we obtain

(v∗i − v∗∗i )x̂i − α(v∗i′ − v̂j
∗

i′ )(1− x̂i′) > 0

Since α(v∗i′ − v̂j
∗

i′ ) > v∗i − v∗∗i > 0 by assumption, we have

x̂i(v
∗
i − v∗∗i )− (1− x̂i′)(v

∗
i − v∗∗i ) > x̂i(v

∗
i − v∗∗i )− α(1− x̂i′)(v

∗
i′ − v̂j

∗

i′ ) > 0

(v∗i − v∗∗i )(x̂i′ + x̂i − 1) > 0

which is a contradiction since
∑

l∈N x̂l ≤ 1.
If such j is 1, then let v∗ be such that v∗1 ≥ αv∗i . Moreover, let v∗∗ be such that
v∗∗1 = maxl∈N v

∗∗
l and v∗∗i = maxl ̸=1 v

∗∗
l . Then, with the same argument, there exists m∗

1

such that

u1(x(m1, θ
∗∗
−1), (v

∗
1, v

∗
−1)) > u1(x(θ

∗∗
1 , θ

∗∗
−1), (v

∗
1, v

∗
−1))

v∗1x̂1 + α
∑
l ̸=1

v∗l x̂l > v∗1

Since v∗i = maxl ̸=1 v
∗
l , we have

v∗1x̂1 + αv∗i (1− x̂1) > v∗1x̂1 + α
∑
l ̸=1

v∗l x̂l > v∗1

αv∗i > v∗1

which contradicts the assumption that v∗1 ≥ αv∗i .
Hence, we proved that for all j ∈ N , there exists v̂j such that θ̂jj = θ∗∗j , and θ̂jj ∈ Sj(θ

∗
j ),

thus θ∗∗j ∈ Sj(θ
∗
j ). This implies that for all j ̸= 1, if we assume that θ∗∗j ∈ Sj(θ

∗∗
j ), then

it must be that θ∗∗j ∈ Sj(θ
∗
j ).
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Now, suppose that the true valuation profile is v∗ such that v∗i = maxj∈N v
∗
j , v∗1 =

maxj ̸=i v
∗
j , and v∗1 > αv∗j for any j. We know that there exists v∗∗ such that v∗∗1 =

maxj∈N v
∗∗
j , and θ∗∗j ∈ Sj(θ

∗
j ) if θ∗∗j ∈ S(θ∗∗j ) for all j ̸= 1. Since the mechanism is

robustly efficient, we have θ∗∗j ∈ Sj(θ
∗∗
j ), and hence θ∗∗j ∈ Sj(θ

∗
j ). If this is the case,

then θ∗∗1 ∈ S1(θ
∗
1) since x(θ∗∗) is such that x1 = 1 and xj = 0 for any j ̸= 1, and thus

θ∗∗ ∈ S(θ∗), and then x(θ∗∗) must be efficient in v∗. However, x(θ∗∗) is such that x1 = 1

and xj = 0 for any j ̸= 1 if the mechanism is robustly efficient, but this allocation is not
efficient in v∗ since v∗i = maxj∈N v

∗
j .

Sufficiency
Without loss of generality, let C ⊆ N be the set of agents who are connected to everyone.
Choose randomly 2 agents from C (w.l.o.g let agents 1 and 2 be such agents). Let the
mechanism x(·) be the following:

• If maxj∈N mj
1 = mj1

1 ̸= m1
1 and maxj∈N m

j
2 = mj2

2 ̸= m2
2, then xj1 = xj2 = 1

2
. If

j1 = j2 = j∗, then xj∗ = 1.
• If maxj∈N mj

1 = m1
1 and maxj∈N m

j
2 = m2

2, then x1 = x2 = α
1+α

and xi = 0 for all
other i.

• Otherwise, w.l.o.g. assume that maxj∈N mj
1 = mj1

1 ̸= m1
1 and maxj∈N m

j
2 = m2

2.
Then, xj1 = m2

1/m
j1
1 + ϵ and xi = 0 for all other i.

We prove that this mechanism is robustly efficient. Without loss of generality, assume
that v1 > v2, and i∗ = argmaxi∈N vi. First, assume that i∗ ̸= 1.
We prove first that m1 such that m2

1 = maxj∈N m
j
1 is never a best response. We prove

that by considering the best responses of agent 1 to each strategy of agent 2.
First, let m2 be such that m2

2 = maxj∈nm
j
2. In this case, the best response of agent 1 is

either m1
1 = maxj∈Nm

i
1 and obtain the allocation x1 = x2 = α

1+α
, or mi∗

1 = maxj∈N m
j
1

and obtain the allocation profile xi∗ = m2
1/m

i∗
1 + ϵ and xi = 0 for all other i ̸= j1. The

first case is the best response if vi∗ ≤ v1+αv2
1+α

, and this can be proved by Lemma 1. The
second case is the best response if vi∗ > v1+αv2

1+α
. We can see it by checking the resulting

payoff of agent 1 by taking this strategy, which is

u1(x(m)) = αxi∗vj1

and there exists xi∗ = m2
1/m

i∗
1 + ϵ < 1 such that

αxi∗vi∗ >
α

1 + α
(v1 + αv2)

where the RHS is the payoff when agent 1 plays the first case.

Next, let m2 be such that m1
2 = maxj∈Nm

j
2. Then, the best responses of agent 1 is either

m1
1 = maxj∈N m

i
1 and obtain the allocation x1 = 1, or mi∗

1 = maxj∈nm
j
1 and obtain the

allocation profile x1 = xi∗ =
1
2

if αvi∗ > v1.
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Then, let m2 be such that mi
2 = maxj∈nm

j
2 for some i /∈ {1, 2}. Then, the best response

of agent 1 is mi∗
1 = maxj∈nm

j
1 and obtain the allocation profile xi = xi∗ = 1

2
or xi∗ = 1

if i = i∗.

Once m1 such that m2
1 = maxj∈N m

j
1 is eliminated, the strategy for agent 2 such that

m2
2 = maxj∈N m

j
2 is never a best response and mi∗

2 = maxj∈N m
j
2 strictly dominates any

other strategy.
If m1

1 = maxj∈N m
j
1, then there exists a strategy m2 such that xi∗ = m1

2/m
i∗
2 + ϵ and

αxi∗vi∗ > αv1

where the RHS is the payoff of agent 2 when he plays m2 such that m1
2 = maxj∈N m

j
2.

Note that by Lemma 1, we have

αv1 >
α

1 + α
(αv1 + v2)

where the RHS is the payoff when agent 2 plays m2
2 = maxj∈N m

j
2.

The fact that mi∗
2 = maxj∈N m

j
2 strictly dominates any other strategy for agent 2 yields

that for agent 1 mi∗
1 = maxj∈N m

j
1 strictly dominates any other strategy.

If 1 = i∗, same argument holds.

Proof of Proposition 1: We prove the statement by a series of lemmata.

Lemma 2. Assume that v1 ̸= maxi∈N vi. Then, m1 such that m1
1 = maxi∈Nm

i
1 is

not in S1
1(θ1). Moreover, if v1 = maxi∈N vi, then m1 such that m1

1 = maxi∈Nm
i
1 and

mi∗
1 = maxi ̸=1m

i
1 are the only messages in S1

1(θ1).

Proof. We first prove the first part. It is sufficient to prove that such m1 is weakly
dominated by some other message if v1 ̸= maxi∈N vi. Assume that vimax = maxi∈Nvi,
and let us take a message m̂1 such that maxi∈N m̂i

1 = mimax
1 . We prove that m̂1 weakly

dominates m1.
Assume first that m−1 is such that m1

i > mi
i for all i. Then, x(m1,m−1) = x(m̂1,m−1),

the allocation is the same irrespective of the message of agent 1.
Otherwise, x(m1,m−1) is

xi(m1,m−1) =

 α
1+α

, for i ∈ {1, i∗}

0, otherwise

and x(m̂1,m−1) is

xi(m̂1,m−1) =

1, for i = imax

0, otherwise
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By Lemma 1, π1(x(m̂1,m−1)) > π1(x(m1,m−1)).
We prove the second part. Let m1 be a message as in the statement, and m̂1 be a

message such that m̂1
1 ̸= maxi∈N m̂

i
1. We prove that m1 weakly dominates m̂1.

If m−1 is such that m1
i > mi

i for all i, then with the same argument with the previous case,
the allocation is the same irrespective of the message of agent 1. So assume otherwise.
Then, x(m1,m−1) is

xi(m1,m−1) =

 α
1+α

, for i ∈ {1, i∗}

0, otherwise

and x(m̂1,m−1) is

xi(m̂1,m−1) =

1, for i = i∗

0, otherwise

and by Lemma 1, π1(x(m1,m−1)) > π1(x(m̂1,m−1)) if v1 = maxi∈N vi.

Lemma 3. For all i such that vi > v1, mi such that m1
i > mi

i is not in S2
i (θi).

Proof. Assume that there is an agent i with vi > v1. Then, by Lemma 2, he knows
that m1 such that m1

1 = maxi∈Nm
i
1 is not in S1

1(θ1), and only messages m1 such that
mi∗

1 = maxi∈Nm
i
1 are in S1

1(θ1).
Let mi and m̂i be such that m1

i > mi
i and m̂i

i > m̂i
i. For mi, we have

xi(mi,m−i) =

1, for i = 1

0, otherwise

if for all j /∈ {1, i}, m1
j > mj

j, and

xi(mi,m−i) =

1, for i = imax

0, otherwise

otherwise.
For m̂i, we always have

xi(m̂i,m−i) =

1, for i = imax

0, otherwise

which weakly dominates mi.

Lemma 4. For all i such that v1 > vi, the messages mi such that m1
i > mi

i are the only
messages in S3

i (θi).
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Proof. Let mi be as in the statement, and let m̂i be a message such that m̂1
i > m̂i

i. We
prove that mi weakly dominates m̂i for any belief.
Assume first that agent i believes that there is an agent j such that vj > v1. Then,
by Lemma 2, all m1 ∈ S1

1(θ1) are such that mimax
1 = maxi′∈N m

i′
1 , and by Lemma 3 all

mj ∈ S2
j (θj) are such that mj

j > m1
j . Hence, x(mi,m−i) is such that ximax(mi,m−i) = 1

for any message of i.
Assume next that i believes that v1 = maxi′∈N vi′ . Then, all messages m1 ∈ S1

1(θ1) are
such that m1

1 = maxi′∈Nm
i′
1 . Hence, x(mi,m−i) is such that

xk(mi,m−i) =

1, for i = 1

0, otherwise

if m1
j > mj

j for all j /∈ {1, i}, and

xk(mi,m−i) =

 α
1+α

, for i ∈ {1, i∗}

0, otherwise

otherwise.
On the other hand, x(m̂i,m−i) is

xi(m̂i,m−i) =

 α
1+α

, for i ∈ {1, i∗}

0, otherwise

We can see by Lemma 1 that x(mi,m−i) yields a weakly higher payoff for i than m̂i for
any i∗, even i∗ = i.

By Lemmata 2, 3, and 4, for any v, x(m) is efficient for any m ∈ T 3(θ).

Proof of Proposition 2: We prove with a series of lemmata.

Lemma 5. For agent 1, a message such that 1 ∈ L1 and mi
1 < mj

1 whereas vi > vj for
some i, j ∈ L2 is eliminated in the first round of weak elimination.

Proof. We prove it for agent 1 first.
Take two messages m1 and m∗

1 with 1 = argmaxi′∈L2∪{1}m
i′
1 = argmaxi′∈L2∪{1}m

i′∗
1 such

that mi
1 < mj

1 and mi∗
1 > mj∗

1 for some i, j ∈ L2 with vi > vj, and there is no l ̸= i, j

and l′ ̸= i, j such that mi
1 < ml

1 < mj
1 and mi∗

1 > ml′∗
1 > mj∗

1 . Moreover, assume that
ml1

1 > ml2
1 if and only if ml1′

1 > ml2′
1 for any other pair (l1, l2) ̸= (i, j). We prove that m1

is weakly dominated by m∗
1.

Assume first that either i /∈ L2 or j /∈ L2, then π1(m1,m−1) = π1(m
∗
1,m−1) for any m−1.
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So, assume i, j ∈ L2. Then, since ρm1(j) = ρm1(i)− 1, we have

xi(m1,m−1) =

(
α

1 + α

)ρm1 (i)

xj(m1,m−1) =

(
α

1 + α

)ρm1 (j)

=

(
α

1 + α

)ρm1 (i)−1

Conversely, for m∗
1, we have ρm∗

1
(i) = ρm1(j) and ρm∗

1
(j) = ρm1(i), and thus

xi(m
∗
1,m−1) =

(
α

1 + α

)ρm∗
1
(i)

=

(
α

1 + α

)ρm1 (j)

=

(
α

1 + α

)ρm1 (i)−1

xj(m
∗
1,m−1) =

(
α

1 + α

)ρm∗
1
(j)

=

(
α

1 + α

)ρm1 (i)

and xl(m1,m−1) = xl(m
∗
1,m−1) for all other l. Hence, π1(m∗

1,m−1) > π1(m1,m−1) since
vi > vj. This implies that agent 1 is weakly better off by choosing m∗

1 than choosing m1,
no matter what m−1. Hence, m1 is weakly eliminated in the first round of weak iterative
eliminations.
Assume now that m1 is such that there exists a sequence of agents (l1, · · · , lk) with l1 = i

and lk = j such that ml1
1 < · · · < mlk

1 and no such agent l′ as mlp
1 < ml′

1 < m
lp+1

1 for
any p ∈ {1, · · · , k − 1}. If vi > vj, then necessarily there exists q ∈ {1, · · · , k} such that
vlq > vlq+1 . Therefore, we can apply the same argument to this pair.

Lemma 6. For agent k + 1, a message such that imax ̸= argmaxi∈L1m
i
k+1 where imax =

argmaxi∈L1vi is eliminated in the first round of weak elimination.

Proof. Obviously true.

Lemma 7. Let i∗ be such that i∗ = argmaxi∈L1 m
i
k+1. For all j ∈ L2, mj ∈ Tj(θj) for

mi∗
j > mj

j if and only if vi∗ > vj.

Proof. Let σm1 : L2 → {1, · · · , |L2|} such that σm1(j) < σm1(j
′) if and only if mj

1 > mj′

1 ,
i.e. a bijection which represents the ranking of all agents in L2 according to m1. We
prove the lemma by induction, starting from agent j such that σm1(j) = 1. For sake of
simplicity, let us renumber all agents in L2 according to σm1(j), i.e. we rename agent
j ∈ L2 as agent j′ if σm1(j) = j′.

(Agent 1) : Take a given message profile (m1,m−1) where m1 is such that m1
1 > mi∗

1 and
m−1 ∈ T 1

−1(θ−1). Let m′
1 be such that m1′

1 < mi∗′
1 . We can easily compute that we have

x1(m1,m−1) =

(
α

1 + α

)|L2(m)|

xi∗(m1,m−1) =

(
α

1 + α

)|L2(m)|
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and

x1(m
′
1,m−1) = 0

xi∗(m
′
1,m−1) =

(
α

1 + α

)|L2(m)|−1

and xi(m
′
1,m−1) = xi(m1,m−1) for any other i. Hence, by Lemma 1, π1(m1,m−1) >

π1(m
′
1,m−1) if and only if v1 > vi∗ .

(Agent j′) : Assume that for all agents j′′ < j′, the statement is true.
We consider first the case where vj′ < vi∗ . In this case, by Lemma 5, it must be that for all
j′′ < j′, we have vj′′ < vj′ . Therefore, it must be that mj′′

j′′ < mi∗

j′′ for any mj′′ ∈ T k
j′′(θj′′)

after some rounds of eliminations, and let k be such smallest number of rounds. Let
(mj′ ,m−j′) be a message profile with mj′

j′ > mi∗

j′ and m−j′ ∈ T k
−j′(θ−j′). Moreover, let m′

j′

be such that mj′

j′ < mi∗

j′ . By the mechanism, we have

xj′(mj′ ,m−j′) =

(
α

1 + α

)|L2(m)|

xi∗(mj′ ,m−j′) =

(
α

1 + α

)|L2(m)|

and

xj′(mj′ ,m−j′) = 0

xi∗(mj′ ,m−j′) =

(
α

1 + α

)|L2(m)−1|

and xi(m
′
j′ ,m−j′) = xi(mj′ ,m−j′) for any other i. Hence, by Lemma 1, πj′(mj′ ,m−j′) <

πj′(m
′
j′ ,m−j′) since vj′ < vi∗ .

Now assume that vj′ > vi∗ . Then, if j′ believes that for all j′′ < j′, vj′′ < vi∗ , then by the
same argument, we can prove that πj′(mj′ ,m−j′) > πj′(m

′
j′ ,m−j′) if and only if vj′ > vi∗ ,

since agent j′ believes that no j′′ < j′ chooses mj′′

j′′ > mi∗

j′′ . So, let j′ believes otherwise,
i.e. there is some j′′ < j′ with vj′′ > vi∗ . We define J = {j′′ ∈ L2(m) | j′′ < j′}. By
assumption, we know that vj′′ > vi∗ . Let us take m = (mj′ ,m−j′) and m′ = (m′

j′ ,m−j′)

such that mj′

j′ > mi∗

j′ and mj′′
j′ < mi∗′

j′ . Then, we have

xi(m) =


(

α
1+α

)ρm1 (i) , for i ∈ L2(
α

1+α

)|L2(m)|
, for i = i∗

0, otherwise
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and

xi(m
′) =



(
α

1+α

)ρm1 (i) , for i ∈ L2 \ J(
α

1+α

)ρm1 (i)−1
, for i ∈ J(

α
1+α

)|L2(m)|−1
, for i = i∗

0, otherwise (including i = j)

We can compute that πj′(m) > πj′(m
′), since for all j′′ < j′, vj′′ < vj′ and vi∗ < vj′ .

Hence, the statement is proved for j′ if for all j′′ < j′ the statement is true. Together
with the case for agent 1, the statement is proved.
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