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1. Introduction

R&D partnerships have become a widespread phenomenon characterizing technological dynamics, es-

pecially in industries with a rapid technological development such as, for instance, the pharmaceutical,

chemical and computer industries [cf. Hagedoorn, 2002; Powell et al., 2005; Roijakkers and Hagedoorn,

2006]. In those industries, firms have become more specialized in specific domains of a technology and

tend to combine their knowledge with the knowledge of other firms that are specialized in different

domains [Powell et al., 1996; Weitzman, 1998]. The increasing importance of R&D collaborations has

spurred research for theoretical models studying these relationships and for empirical tests of these

models.

In this paper, we consider a general model of competition à la Cournot where firms choose both,

their R&D expenditures and output levels. Firms can reduce their costs of production by exerting

R&D efforts. An important – and realistic – innovation of our framework is to study the equilibrium

outcomes in which firms have R&D collaborations with both, competing firms from their own sector as

well as firms from other sectors. In this model, R&D collaborations can be represented by a network.

This allows us to write the profit function of each firm as a function of two matrices, A and B,

where A is the adjacency matrix of the network capturing all direct R&D collaborations, while B is a

competition matrix that links competing firms in the product market. These two matrices highlight

two opposing effects of technology spillovers and competition, where all firms indirectly interact with

all other firms. To illustrate this point, consider, for example, the car manufacturing sector. The

price of a car is determined by the demand for cars and the competition with other car-producing

firms. However, these firms have R&D collaborations not only with other car manufacturing firms

but also with firms from other sectors (e.g. services or ICT).1 As a result, the price of cars will also

be indirectly influenced by firms from other industries.

We characterize the Nash equilibrium of this game for any type of R&D collaboration network, i.e.

any matrix A, as well as for any type of competition structure between firms, i.e. any matrix B (cf.

Proposition 1). We show that there exists a key trade-off faced by firms between the technology (or

knowledge) spillover effect of R&D collarborations and the product rivalry effect of competition. The

former effect captures the positive impact of R&D collaborations on output and profits (through the

matrix A) while the latter captures the negative impact of competition and market stealing effects

(through the matrix B).

Due to the existence of externalities through technology spillovers that are not internalized in

the R&D decisions of firms, the social benefits of R&D are substantially greater than the private

returns. This creates an environment where government funding programs that aim at fostering

firms’ R&D activities can be welfare improving. We analyze the optimal design of such R&D subsidy

policy programs (where a planner can subsidize the firms’ R&D effort costs) that take into account

the network externalities in our model. We derive an exact formula for any type of network and

competition structure that determines the optimal amount of subsidies per unit of R&D effort that

should be given to each firm. We discriminate between homogeneous subsidies (cf. Proposition 2),

where each firm obtains the same amount of subsidy per unit of R&D and targeted subsidies (cf.

1Many carmakers have realized that the next-generation vehicles cannot be built without more input from telecoms
and software experts, while technology companies could benefit from a traditional car producing partner to help with
industrial scale production, retail and repair. This generates incentives for carmakers and technology firms to cooperate
more closely. See e.g. “Apple, BMW in courtship with an eye on car collaboration.” Reuters Technology (2015, Jul.
31th). Retrieved from http://www.reuters.com/.
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Proposition 3), where subsidies can be firm specific. Note that in this paper we focus on a network

contingent policy, that is, our policy reacts to changes in the network, and we specify how, for any

observed network structure, the R&D policy should be specified. The advantage of contingent policies

over fixed policies has already been emphasized in Buiter [1981], where it is stated that “... in an

uncertain world an optimal contingent policy will always dominate an optimal fixed policy.”

We then bring the model to the data by using a unique panel dataset of R&D collaborations and

annual company reports over different sectors, regions and years.2 Using a structural econometric

approach, we estimate the first-order conditions of the model by testing the trade-off firms are facing

between the technology (or knowledge) spillover effect of R&D collaborations and the product rivalry

effect of competition mentioned above. In terms of identification strategy, we use firm and time fixed

effects (as we have a panel of firms), an instrumental variables (IV) strategy and a network formation

model. In particular, we identify the causal effect of R&D spillovers by using changes in firm and state-

wide tax incentives for R&D, where we use changes in the firm-specific tax price of R&D (exploiting

changes in tax credit rules following Bloom et al. [2013]) to construct instrumental variables for R&D

expenditures. As predicted by the theoretical model, we find that the spillover effect has a positive

and significant impact on output and profit while the competition effect has a negative and significant

impact.

Using our estimates and following our theoretical results, we then empirically determine the optimal

subsidy policy, both for the homogenous case where all firms receive the same subsidy per unit of R&D,

and for the targeted case, where the subsidy per unit of R&D may vary across firms. The targeted

subsidy program turns out to have a much higher impact on total welfare as it can improve welfare

by up to 80%, while the homogeneous subsidies can improve total welfare only by up to 4%.3 We

then empirically rank firms according to the welfare-maximizing subsidies that they receive by the

planner. We find that the firms that should be subsidized the most are not necessarily the ones that

have the highest market share, the largest number of patents or are the most central ones in the R&D

network. Indeed these measures can only partially explain the ranking of firms that we find, as the

market share is more related to the product market rivalry effect, while the R&D network and the

patent stocks are more related to the technology spillover effect, and both enter into the computation

of the the optimal subsidy program.

The rest of the paper is organized as follows. In Section 2, we compare our contribution to

the existing literature. In Section 3, we develop a model of firms competing in the product market

with technology sharing R&D collaborations that allow them to reduce their production costs. We

characterize the Nash equilibrium of this game and show under which conditions it exists, is unique

and interior. Section 4 determines the aggregate welfare. Section 5 discusses optimal R&D subsidies.

Section 6 describes the data. Section 7 is divided into three parts. In Section 7.1, we define the

econometric specification of our model while, in Section 7.2, we highlight our identification strategy.

2There are many ways in which firms might benefit from each other’s research beyond what is captured by the network
of R&D collaborations. Thus, as a robustness check, we also define R&D collaborations between firms more broadly by
their degree of technological proximity. First, following Jaffe [1986], we exploit firm-level data on patenting in different
technology classes to locate firms in a multidimensional technology space. Second, following Bloom et al. [2013], we use
the so-called Mahalanobis distance measure between firms that exploits the co-location of patenting technology classes
within firms.

3We find that the effect of targeted R&D subsidy programs can be large. Similarly, Acemoglu and Akcigit [2006] find
that the gain from size-dependent intellectual property right (IPR) policies can be substantial. Moreover, Akcigit [2009]
finds a welfare rise by 65% from a uniform subsidy, and an additional 9% welfare gain from a size-dependent two-level
R&D subsidy.
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The estimation results are given in Section 7.3. Section 8 provides different robustness checks. The

policy results of our empirical analysis are given in Section 9. Finally, Section 10 concludes the paper.

All proofs can be found in Appendix A. The network definitions and characterizations used throughout

the paper are given in the supplementary Appendix B, the Herfindahl concentration index is discussed

in the supplementary Appendix C, an analysis in terms of Bertrand competition is performed in

supplementary Appendix D. Supplementary Appendix E provides a theoretical model of direct and

indirect technology spillovers. Supplementary Appendix F investigates the optimal network structure

of R&D collaborations. Supplementary Appendix G gives a detailed description of how we construct

and combine our different datasets for the empirical analysis.

2. Related Literature

Our paper lies at the intersection of different strands of the literature, and we would like to expose

them in the following in order to highlight our contribution.

Our theoretical model analyzes a game with strategic complementarities where firms decide about

production and R&D effort by treating the network as exogenously given. Thus, it belongs to a par-

ticular class of games known as games on networks [cf. Jackson and Zenou, 2015].4 Compared to this

literature, we develop an R&D network model where competition between firms is explicitly modelled,

not only within the same product market but also across different product markets (see Proposition

1). This yields very general results that can encompass any possible network of collaborations and

any possible market interaction structure of competition between firms. We also provide an explicit

welfare characterization and determine which network maximizes total welfare in certain parameter

ranges (see Proposition 4 in supplementary Appendix F). To the best of our knowledge, this is one of

the first papers that provides such an analysis.5

We also perform a policy analysis of R&D subsidies that consists in subsidizing firms’ R&D ef-

forts. We are able to determine the optimal subsidy levels both, when it is homogenous across firms

(Proposition 2) and when it is targeted to specific firms (Proposition 3). We are not aware of any

other studies of subsidy policies in the context of R&D collaboration networks.6

In the industrial organization literature, first pioneered by Arrow [1962], there is a long tradition

of models that analyze product and price competition with R&D collaborations. One of their main

insights is that the incentives to invest in R&D are reduced by the presence of such technology

spillovers. This raised the interest in R&D collaborations as a means of internalizing R&D spillovers.

The seminal works by D’Aspremont and Jacquemin [1988] and Suzumura [1992] focus on the direct

links between firms in the R&D collaboration process.

In this literature, however, there is no explicit network of R&D collaborations. The first paper

that provides an explicit analysis of R&D networks is that by Goyal and Moraga-Gonzalez [2001].7

The authors introduce a strategic Cournot oligopoly game in the presence of externalities induced by a

4The economics of networks is a growing field. For recent surveys of the literature, see Jackson [2008] and Jackson
et al. [2017].

5An exception is the recent paper by Belhaj et al. [2016], who study network design in a game on networks with
strategic complements, but neglect competition effects (global substitutes).

6There are papers that look at subsidies in industries with technology spillovers but the R&D network is not explicitly
modelled. See e.g. Acemoglu et al. [2012]; Akcigit [2009]; Bloom et al. [2002]; Hinloopen [2001]; Leahy and Neary [1997];
Spencer and Brander [1983].

7See also Dawid and Hellmann [2014] and Goyal and Joshi [2003].
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network of R&D collaborations. Benefits arise in these collaborations from sharing knowledge about a

cost-reducing technology. However, by forming collaborations, firms also change their own competitive

position in the market as well as the overall market structure. Thus, there exists a two-way flow of

influence from the market structure to the incentives to form R&D collaborations and, in turn, from

the formation of collaborations to the market structure. Westbrock [2010] extends their framework to

analyze welfare and inequality in R&D collaboration networks, but abstracts from R&D investment

decisions. Even though we do not study network formation as, for example, in Goyal and Moraga-

Gonzalez [2001], compared to these papers, we are able to provide results for all possible networks with

an arbitrary number of firms and a complete characterization of equilibrium output and R&D effort

choices in multiple interdependent markets. We also determine policies related to network design and

optimal R&D subsidy programs.

From an econometric perspective, there has recently been a significant progress in the literature

on identification and estimation of social network models (see Blume et al. [2011] and Chandrasekhar

[2016], for recent surveys). In his seminal work, Manski [1993] introduces a linear-in-means social

interaction model with endogenous effects, contextual effects, and correlated effects. Manski shows

that the linear-in-means specification suffers from the “reflection problem” and the different social

interaction effects cannot be separately identified. Bramoullé et al. [2009] generalize Manski’s linear-

in-means model to a general social network model, whereas the endogenous effect is represented by

the average outcome of the peers in the network. They provide conditions for the identification of the

general social network model using the characteristics of an indirect connection as an instrument for the

endogenous effect assuming that the network (and its adjacency matrix) is exogenous. However, if the

adjacency matrix is endogenous, that is, if there exists some unobservable factor that could affect both

link formation and outcomes, then the above identification strategy will fail. Here, taking advantage of

a panel dataset where the network changes over time,8 we adopt a similar identification strategy using

instruments, but with both firm and time fixed effects to attenuate the potential endogeneity of the

adjacency matrix. Then, we go even further by accounting for the endogeneity in network formation

using a reduced-form instrumental variables methods. For that, we add a first stage regression where an

R&D collaboration between two firms depends on whether these two firms had an R&D collaboration

or a common collaborator in the past, whether they are technologically close in terms of their patent

portfolios and and whether they are geographically close [cf. e.g. Hanaki et al., 2010]. We then

carry out our instrumental variable (IV) estimation strategy described above using IVs based on the

predicted adjacency matrix derived from the first stage. Moreover, to address the endogeneity of R&D

expenditures, following Bloom et al. [2013], we use changes in the firm-specific tax price of R&D

to construct instrumental variables for R&D expenditures, and this allows us to estimate the causal

impact of R&D spillovers.

There is also a large empirical literature on technology spillovers [see e.g. Bloom et al., 2013;

Einiö, 2014; Griffith et al., 2004; Griliches, 1995], and R&D collaborations [see e.g. Hanaki et al.,

2010; Powell et al., 2005]. Moreover, there is an extensive literature that estimates the effect of R&D

subsidies on private R&D investments and other measures of innovative performance (for a survey,

see Klette et al. [2000]). Methodologically, our paper belongs to a small but growing literature using

structural empirical models to study the economics of innovation (see also the seminal works of Levin

8Whereas in many applications the network is observed only at a single point in time [see e.g. Bramoullé et al., 2009;
Calvó-Armengol et al., 2009].
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and Reiss [1988] and Griliches et al. [1986]) and the effects of R&D spillovers and technology diffusion

[e.g. Eaton and Kortum, 2002; Takalo et al., 2013a].

There exist several papers that empirically study the impact of R&D subsidies on private R&D

investments [e.g. Bloom et al., 2002; Dechezleprêtre et al., 2016; Feldman and Kelley, 2006; Takalo

et al., 2013b]. However, to the best of our knowledge, our paper is the first that provides a ranking

of all firms in our data according to the welfare maximizing subsidies that they should receive by the

planner. We show, in particular, that the highest subsidized firms are not necessarily those with the

largest market share, a larger number of patents or the highest (betweenness, eigenvector or closeness)

centrality in the network of R&D collaborations. We find, however, that larger firms should receive

higher subsidies than smaller firms as they generate more R&D spillovers. This result is in line with

that of Bloom et al. [2013] who also find that smaller firms generate lower social returns to R&D

because they operate more in technological niches.9

Further, contrary to Acemoglu et al. [2012] and Akcigit [2009], we do not focus on entry and

exit but instead incorporate the network structure of R&D collaborating firms.10 This allows us

to take into account the R&D spillover effects of incumbent firms, which are typically ignored in

studies of the innovative activity of incumbent firms versus entrants. Therefore, we see our analysis

as complementary to that of Acemoglu et al. [2012], and we show that R&D subsidies can trigger

considerable welfare gains when technology spillovers through R&D alliances are incorporated.

3. The Model

We consider a general Cournot oligopoly game where a set N = {1, . . . , n} of firms is partitioned in

M ≥ 1 heterogeneous product markets.11 We allow for consumption goods to be imperfect substitutes

(and thus differentiated products) by adopting the consumer utility maximization approach of Singh

and Vives [1984]. We first consider the demand qi ∈ R+, for the good produced by firm i in market

Mm, m = 1, . . . ,M . A representative consumer in market Mm obtains the following gross utility

from consumption of the goods (qi)i∈Mm

Ūm((qi)i∈Mm) = αm

∑

i∈Mm

qi −
1

2

∑

i∈Mm

q2i −
ρ

2

∑

i∈Mm

∑

j∈Mm,j ̸=i

qiqj.

In this formulation, the parameter αm captures the market size or the heterogeneity in products,

whereas ρ ∈ (0, 1] measures the degree of substitutability between products. In particular, ρ → 1

depicts a market of perfectly substitutable goods, while ρ → 0 represents the case of local monopolies.

The consumer maximizes net utility Um = Ūm−
∑

i∈Mm
piqi, where pi is the price of good i. This

9Schumpeter [1942] already argued that large firms are the most important contributors for generating innovations
in an economy as only they would possess the required resources for setting up R&D laboratories and departments.

10Similar to our setup, Akcigit [2009] evaluates the effects of a size-dependent R&D subsidy on heterogeneous firms,
and finds that the optimal size-dependent R&D subsidy policy does considerably better than an optimal uniform (size-
independent) policy. However, differently to us Akcigit [2009] finds that the optimal (welfare-maximizing) policy provides
higher subsidies to smaller firms. The difference between Akcigit [2009] and our framework is that he focusses on entry
and exit while we incorporate technology spillovers thorough an explicit R&D network, in which concentration on large
firms can induce large welfare gains. Moreover in Akcigit [2009] firms tend to lose their R&D capabilities with firm age
and size, while we do not make this assumption.

11In the empirical analysis carried out in Section 6, we identify the market in which a firm operates by its primary
4-digit Standard Industrial Classification (SIC) code. As a result, a market corresponds to a particular industry or sector.
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gives the inverse demand function for firm i

pi = ᾱi − qi − ρ
∑

j∈Mm,j ̸=i

qj, (1)

where ᾱi =
∑M

m=1 αm1{i∈Mm}. In the model, we will study both the general case where ρ > 0 but

also the special case where ρ = 0. The latter case is when firms are local monopolists so that the price

of the good produced by each firm i is only determined by its own quantity qi (and the size of the

market) but not by the quantities of other firms, i.e. pi = ᾱi − qi.

Firms can reduce their production costs by investing in R&D as well as by benefiting from an

R&D collaboration with another firm.12 The amount of this cost reduction depends on the R&D

effort ei ∈ R+ of firm i and the R&D efforts of the firms that are collaborating with i, i.e., R&D

collaboration partners. Given the effort level ei, the marginal cost ci of firm i is given by13,14

ci = c̄i − ei − ϕ
n∑

j=1

aijej, (2)

The network, G, can be represented by a symmetric n×n adjacency matrix A. Its elements aij ∈ {0, 1}
indicate whether there exists a link between nodes i and j.15 In the context of our model, aij = 1

if firms i and j have an R&D collaboration (0 otherwise) and aii = 0. In Equation (2), the total

cost reduction for firm i stems from its own research effort ei and the research effort of all other

collaborating firms (i.e.knowledge spillovers), which is captured by the term
∑n

j=1 aijej , where ϕ ≥ 0

is the marginal cost reduction due to the collaborators R&D effort.16 We assume that R&D effort is

costly. In particular, the cost of R&D effort is an increasing function, exhibits decreasing returns, and

is given by 1
2e

2
i . Firm i’s profit is then given by

πi = (pi − ci)qi −
1

2
e2i . (3)

Inserting marginal cost from Equation (2) and inverse demand from Equation (1) into Equation (3)

gives the following strictly quasi-concave profit function for firm i

πi = (ᾱi − c̄i)qi − q2i − ρ
n∑

j=1

bijqiqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i , (4)

where bij ∈ {0, 1} indicates whether firms i and j operate in the same market or not. In Equation (4),

we can write
∑

j∈Mm,j ̸=i qj =
∑n

j=1 bijqj since i ∈ Mm and bij = 1 indicates that j ∈ Mm. Let B be

12For example, Bernstein [1988] finds that R&D spillovers decrease the unit costs of production for a sample of
Canadian firms.

13The specification of marginal costs follows Goyal and Moraga-Gonzalez [2001] and generalizes earlier studies such
as that by D’Aspremont and Jacquemin [1988] and Leahy and Neary [1997] where spillovers are assumed to take place
between all firms in the industry and no distinction between collaborating and non-collaborating firms is made.

14We assume that the R&D effort independent marginal cost c̄i is large enough such that marginal costs, ci, are always
positive for all firms i ∈ N . See Equation (33) in the proof of Proposition 1 in Appendix A for a precise lower bound on
c̄i.

15See supplementary Appendix B.1 for more definitions and characterizations of networks.
16In Equation (66) in supplementary Appendix E we present an extension of the model where firms benefit from both,

direct technology spillovers between collaborating firms and indirect technology spillovers between non-collaborating
firms. It is therefore important to note that we can generalize the model to capture potential technology spillovers
between firms which are not necessarily engaged in an R&D collaboration.
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the n× n matrix whose ij-th element is bij. B captures which firms operate in the same market and

which firms do not. Consequently, B can be written as a block diagonal matrix with zero diagonal

and blocks of size |Mm|, m = 1, . . . ,M . An illustration can be found below:17

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 · · · 1 0 · · · · · · 0 · · ·

1 0 · · ·

...
...

...

...
...

. . . 1
...

...

1 · · · 1 0 0 · · · · · · 0 · · ·

0 · · · · · · 0 0 1 · · · 1

...
... 1 0 · · ·

...

...
...
...

...
. . . 1

0 · · · · · · 0 1 · · · 1 0

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

We consider quantity competition among firms à la Cournot.18 The next proposition establishes

the Nash equilibrium where each firm i simultaneously chooses both its output, qi, and its R&D effort,

ei, in an arbitrary network A of R&D collaborations and an arbitrary competition matrix B.19

Proposition 1. Consider the n–player simultaneous move game with payoffs given by Equation (4)

and strategy space in Rn
+×Rn

+. Denote by µi ≡ ᾱi− c̄i for all i ∈ N , µ the corresponding n× 1 vector

with components µi, φ ≡ ϕ/(1−ρ), ρ ∈ [0, 1), ϕ ≥ 0, |Mm| the size of market m for m = 1, . . . ,M , In

the n× n identity matrix, u the n× 1 vector of ones and λPF(A) the largest eigenvalue of A. Denote

also by µ = mini {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with 0 < µ < µ.

(i) Let the firms’ output levels be bounded from above and below such that 0 ≤ qi ≤ q̄ for all i ∈ N .

Then a Nash equilibrium always exists. Further, if either ρ = 0, ϕ = 0 or20

ρ+ ϕ <

(
max

{
λPF(A), max

m=1,...,M
{|Mm|− 1}

})−1

(5)

then the Nash equilibrium is unique.

(ii) If in addition

ρ max
m=1,...,M

{|Mm|− 1} < 1− ϕλPF(A), (6)

holds then there exists a unique interior Nash equilibrium with output levels, 0 < qi < q̄ for all

i ∈ N , and a large enough production capacity q̄, given by

q = (In + ρB− ϕA)−1µ. (7)

(iii) Assume that there exists only a single market so that M = 1. Let the µ-weighted Katz-Bonacich

17The observed competition matrix B from our data is shown in Figure 5 in the empirical Section 7.
18In supplementary Appendix D we show that the same functional forms for best response quantities and efforts can

be obtained for price setting firms under Bertrand competition as we find them in the case of Cournot competition.
19See supplementary Appendix B.3 for a precise definition of the Bonacich centrality used in the proposition.
20A weaker bound can be obtained requiring that ϕλPF(A) + ρλPF(B) < 1. See also Figure A.2 in the proof of

Proposition 1 in Appendix A.
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centrality21 be given by bµ (G,φ) ≡ (In − φA)−1µ. If

φλPF (A) +
nρ

1− ρ

(
µ

µ
− 1

)
< 1, (8)

holds, then there exists a unique interior Nash equilibrium with output levels given by

q =
1

1− ρ

(
bµ(G,φ) −

ρ ∥bµ(G,φ)∥1
1 + ρ(∥bu(G,φ)∥1 − 1)

bu(G,φ)

)
. (9)

(iv) Assume a single market (i.e., M = 1) and that µi = µ for all i ∈ N . If φλPF (A) < 1, then there

exists a unique interior Nash equilibrium with output levels given by

q =
µ

1 + ρ(∥bu (G,φ) ∥1 − 1)
bu (G,φ) . (10)

(v) Assume a single market (i.e., M = 1), µi = µ for all i ∈ N and that goods are non-substitutable

(i.e., ρ = 0). If ϕ < λPF(A)−1, then the unique equilibrium quantities are given by q = µbu (G,ϕ).

(vi) Let q be the unique Nash equilibrium quantities in any of the above cases (i) to (v), then for all

i ∈ N = {1, . . . , n} the equilibrium profits are given by

πi =
1

2
q2i , (11)

and the equilibrium efforts are given by

ei = qi. (12)

The existence of an equilibrium stated in case (i) of the proposition follows from the equivalence of

the associated first order conditions with a bounded linear complementarity problem (LCP) [Byong-

Hun, 1983].22 Further, a unique solution is guaranteed to exist if ρ = 0 or when the matrix In+ρB−ϕA

is positive definite. The condition for the latter is stated in Equation (5) in case (ii) of the proposition.

The subsequent parts of the proposition state the Nash equilibrium starting from the most general

case where firms can operate and have links in any market (case (ii)) to the case where all firms

operate in the same market (case (iii)) and where they have the same fixed cost of production and no

product heterogeneity (case (iv)) and, finally, when goods are not substitutable (case (v)). Indeed, it

is easily verified (see Appendix A; proof of Proposition 1) that the first-order condition with respect

to R&D effort ei is given by Equation (12),23 while the first-order condition with respect to quantity

qi leads to

qi = µi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj, (13)

or, in matrix form, q = µ−ρBq+ϕAq. In terms of the literature on games on networks [Jackson and

Zenou, 2015], this proposition generalizes the results of Ballester et al. [2006] and Calvó-Armengol

et al. [2009] for the case of local competition in different markets and choices of both effort and

21See also supplementary Appendix B.3.
22This is the linear version of the mixed complementarity problem analyzed in Simsek et al. [2005]. For a detailed

discussion and analysis of the LCP see Cottle et al. [1992].
23The proportional relationship between R&D effort levels and output in Equation (12) has been confirmed in a number

of empirical studies [see e.g. Cohen and Klepper, 1996a,b; Klette and Kortum, 2004].
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Figure 1: Equilibrium output from Equation (14) and profits for the three firms with varying values of the competition
parameter 0 ≤ ρ ≤ 1

2

(√
2− 2ϕ

)
, µ = 1 and ϕ = 0.1. Profits of firms 1 and 3 intersect at ρ = ϕ (indicated with a dashed

line).

quantity. This proposition provides a total characterization of an interior Nash equilibrium as well as

its existence and uniqueness in a very general framework when different markets and different products

are considered. If we consider case (i), the new conditions are Equations (5) and (6), which guarantee

the existence, uniqueness and interiority of the Nash equilibrium solutions in the most general case. In

case (ii) where all firms operate in the same market, in order to obtain a unique interior solution, only

the condition in Equation (8) is required, which generalizes the usual condition φλPF (A) < 1 given,

for example, in Ballester et al. [2006]. In fact, the condition in Equation (8) imposes a more stringent

requirement on ρ,ϕ,A as the left-hand side of the inequality is now augmented by nρ
1−ρ

(
µ
µ − 1

)
≥ 0.

That is, everything else equal, the higher the discrepancy µ/µ of marginal payoffs at the origin, the

lower is the level of network complementarities φλPF (A) that are compatible with a unique and

interior Nash equilibrium.

More generally, the key insight of Proposition 1 is the interaction between the network effect,

through the adjacency matrix A, and the market effect, through the competition matrix B and this

is why the first-order condition with respect to qi given by Equation (13) takes both of them into

account. To better understand this result, consider the following simple example where firms 1 and

2 as well as firms 1 and 3 are engaged in R&D collaborations. Suppose that there are two markets

where firms 1 and 2 operate in the same market M1 while firm 3 operates alone in market M2 (see

Figure 1).

Then, the adjacency matrix A and the competition matrix B are given by

A =

⎛

⎜⎝
0 1 1

1 0 0

1 0 0

⎞

⎟⎠ , B =

⎛

⎜⎝
0 1 0

1 0 0

0 0 0

⎞

⎟⎠ .

Assume that firms are homogeneous such that µi = µ for i = 1, 2, 3. Using Proposition 1, the
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equilibrium output is given by

q = µ(I− ϕA+ ρB)−1u =
µ

1− 2ϕ2 + 2ϕρ− ρ2

⎛

⎜⎝
1 + 2ϕ− ρ

(ϕ+ 1)(1 − ρ)

(1 + ρ)(1 + ϕ− ρ)

⎞

⎟⎠ . (14)

Profits are equal to πi = q2i /2 for i = 1, 2, 3. The condition for an interior equilibrium is ρ+ϕ < 1/
√
2.

Figure 1 shows an illustration of equilibrium outputs and profits for the three firms with varying values

of the competition parameter 0 ≤ ρ ≤ 1
2

(√
2− 2ϕ

)
, µ = 1 and ϕ = 0.1. We see that firm 1 has higher

profits due to having the largest number of R&D collaborations when competition is weak (ρ is low

compared to ϕ). However, when ρ increases, its profits decrease and become smaller than the profit

of firm 3 when ρ > ϕ. This result highlights the key trade-off faced by firms between the technology

(or knowledge) spillover effect and the product rivalry effect of R&D [cf. Bloom et al., 2013] since the

former increases with ϕ, which captures the intensity of the spillover effect while the latter increases

with ρ, which indicates the degree of competition in the product market.

To better understand these two effects, consider the case of a single market (M = 1), where all

three firms compete with each other in the same market so that24

B =

⎛

⎜⎝
0 1 1

1 0 1

1 1 0

⎞

⎟⎠ .

If ϕ/(1 − ρ) < 1/
√
2, then the unique equilibrium output will be given by

q =
µ

1− 2ϕ2 + 4ϕρ+ ρ− 2ρ2

⎛

⎜⎝
1 + 2ϕ− ρ

1 + ϕ− ρ

1 + ϕ− ρ

⎞

⎟⎠ . (15)

Since there is only one market, the position in the network will determine which firm will produce the

most and have the highest profit. As firm 1 is the most central firm in the network and has the highest

Bonacich centrality, it has the highest profit. This is also immediately apparent from Equation (15).

In other words, when M = 1, only the technology (or knowledge) spillover effect is of importance and

the position in the network is the only determinant of output and profit. However, we saw that this

was not the case in the previous example with two markets because, as compared to firm 3, even if

firm 1 had the highest Bonacich centrality, it was competing with firm 2 on the product market while

firm 3 had no competitor on its market. In other words, there is now a trade-off between the position

in the network (technology (or knowledge) spillover effect) and the position in the product market

(product rivalry effect). We have seen that, depending on the values of ρ and ϕ, firm 1 can have a

higher or lower output and profit than firm 3.

24It is easily verified that, in this case, B = (uu⊤ − In) where u = (1, . . . , 1)⊤ is an n-dimensional vector of ones.

10



4. Welfare

We next turn to analyzing welfare in the economy. Inserting the inverse demand from Equation (1)

into net utility Um of the consumer in market Mm shows that

Um =
1

2

∑

i∈Mm

q2i +
ρ

2

∑

i∈Mm

∑

j∈Mm,j ̸=i

qiqj.

For given quantities, the consumer surplus is strictly increasing in the degree ρ of substitutabil-

ity between products. In the special case of non-substitutable goods, when ρ → 0, we obtain

Um = 1
2

∑
i∈Mm

q2i , while in the case of perfectly substitutable goods, when ρ → 1, we get Um =
1
2

(∑
i∈Mm

qi
)2
. The total consumer surplus is then given by U =

∑M
m=1 Um. The producer surplus is

given by aggregate profits Π =
∑n

i=1 πi. As a result, total welfare is equal to W = U + Π. Inserting

profits as a function of output from Equation (11) leads to

W =
n∑

i=1

q2i +
ρ

2

n∑

i=1

n∑

j ̸=i

bijqiqj = q⊤q+
ρ

2
q⊤Bq. (16)

As welfare in Equation (16) is increasing in the output levels of the firms, it is clear that the higher

the production levels of the firms, the higher is welfare.25 Since output is proportional to R&D, this

shows that there is a general problem of underinvestment in R&D. In the following section we therefore

study the welfare gains from a policy that encourages firms to spend more on R&D.

5. The R&D Subsidy Policy

Because of the externalities generated by R&D activities, market resource allocation will typically not

be socially optimal. Policy can resolve this market failure through R&D subsidy programs. In order to

foster innovative activities and economic growth, governments in numerous countries have introduced

R&D support programs aimed at increasing the R&D effort in the private sector.26 Moreover, national

governments in a number of countries subsidize the R&D activities of domestic firms, particularly in

industries where foreign and domestically owned firms are in competition for international markets.

Such programs are, for example, the EUREKA program in the European Union or the SPIR program

in the United States.

To better understand R&D policies in collaboration networks, we extend our framework by con-

sidering an optimal R&D subsidy program that reduces the firms’ R&D costs. For our analysis, we

first assume that all firms obtain a homogeneous subsidy per unit of R&D effort spent. Then, we pro-

ceed by allowing the social planner to differentiate between firms and implement firm-specific R&D

subsidies.27

25A discussion of how welfare is affected by the network structure can be found in the supplementary Appendix F. In
particula r, we investigate which network structure maximizes welfare.

26Public R&D grants covered about 7.5% of private R&D in the OECD countries in 2004 [OECD, 2012]. R&D tax
credits are another commonly used fiscal incentive for R&D investment. As of 2006, 32 states in the U.S. provided a tax
credit on general, company-funded R&D [cf. Wilson, 2009]. For an overview of R&D tax credits see Bloom et al. [2002].

27We would like to emphasize that, as we have normalized the cost of R&D to one in the profit function of Equation
(3), the absolute values of R&D subsidies are not meaningful in the subsequent analysis, but rather relative comparisons
across firms are.
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5.1. Homogeneous R&D Subsidies

An active government is introduced that can provide a subsidy, s ∈ [0, s̄] per unit of R&D effort. It

is assumed that each firm receives the same per unit R&D subsidy. The profit of firm i with an R&D

subsidy can then be written as:28

πi = (ᾱ− c̄i)qi − q2i − ρqi
∑

j ̸=i

bijqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i + sei. (17)

This formulation follows Hinloopen [2000, 2001] and Spencer and Brander [1983], where each firm i

receives a subsidy per unit of R&D.29 The government (or the planner) is here introduced as an agent

that can set subsidy rates on R&D effort in a period before the firms spend on R&D. The assumption

that the government can pre-commit itself to such subsidies and thus can act in this leadership role

is fairly natural. As a result, this subsidy will affect the levels of R&D conducted by firms, but not

the resolution of the output game. In this context, the optimal R&D subsidy s∗ ∈ [0, s̄], s̄ > 0,

determined by the planner is found by maximizing total welfare W (G, s) less the cost of the subsidy

s
∑n

i=1 ei, taking into account the fact that firms choose output and effort for a given subsidy level by

maximizing profits in Equation (17). If we define net welfare as W (G, s) ≡ W (G, s) − s
∑n

i=1 ei, the

social planner’s problem is given by

s∗ = argmaxs∈[0,s̄]W (G, s).

The following proposition derives the Nash equilibrium quantities and efforts and the optimal subsidy

level that solves the planner’s problem.

Proposition 2. Consider the n–player simultaneous move game with profits given by Equation (17)

where firms choose quantities and efforts in the strategy space in Rn
+ × Rn

+. Further, let µi, i ∈ N be

defined as in Proposition 1.

(i) If Equation (5) holds, then the matrix M = (In+ ρB−ϕA)−1 exists, and the unique interior Nash

equilibrium in quantities with subsidies (in the second stage) is given by

q = q̃+ sr, (18)

where q̃ = Mµ and r = M (u+ ϕAu). The equilibrium profits are given by

πi =
q2i + s2

2
, (19)

and efforts are given by ei = qi + s for all i = 1, . . . , n.

(ii) Assume that goods are not substitutable, i.e. ρ = 0. Then if
∑n

i=1 (1 + 2ri(1− ri)) ≥ 0, the optimal

subsidy level (in the first stage) is given by

s∗ =

∑n
i=1 q̃i (2ri − 1)∑n

i=1 (1− 2ri (1− ri))
,

28Similar to Section 3 we assume that the R&D effort independent marginal cost c̄i is large enough such that marginal
costs, ci, are always positive for all firms i ∈ N . See Equation (47) in the proof of Proposition 2 in Appendix A for a
precise lower bound on c̄i.

29Leahy and Neary [1997] have also investigated subsidies to production in a similar framework.
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provided that 0 < qi < q̄ for all i = 1, . . . , n and 0 < s∗ < s̄.

(iii) Assume that goods are substitutable, i.e. ρ > 0. Then if

n∑

i=1

⎛

⎝1 + 2ri(1− ri)− ρ
n∑

j=1

bijrirj

⎞

⎠ ≥ 0,

the optimal subsidy level (in the first stage) is given by

s∗ =

∑n
i=1

(
q̃i(2ri − 1) + ρ

2

∑n
j=1 bij(q̃irj + q̃jri)

)

∑n
i=1

(
1 + ri

(
2(1− ri)− ρ

∑n
j=1 bijrj

)) ,

provided that 0 < qi < q̄ for all i = 1, . . . , n and 0 < s∗ < s̄.

In part (i) of Proposition 2, we solve the second stage of the game where firms decide their output

given the homogenous subsidy s. In parts (ii) and (iii) of the proposition, we solve the first stage when

the planner optimally determines the subsidy per R&D effort when goods are not substitutable, i.e.

ρ = 0, and when they are substitutable (ρ > 0). The proposition then determines the exact value of

the optimal subsidy to be given to the firms embedded in a network of R&D collaborations in both

cases. Interestingly, the optimal subsidy depends on the vector r = Mu+ ϕMAu, where Mu is the

Nash equilibrium output in the homogeneous firms case (see also Equation (7)) and the vector d = Au

determines the degree (i.e. number of links) of each firm.

5.2. Targeted R&D Subsidies

We now consider the case where the planner can discriminate between firms by offering different

subsidies. In other words, we assume that each firm i, for all i = 1, . . . , n, obtains a subsidy si ∈ [0, s̄]

per unit of R&D effort. The profit of firm i can then be written as:30

πi = (ᾱ− c̄i)qi − q2i − ρqi
∑

j ̸=i

bijqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i + siei. (20)

As above, the optimal R&D subsidies s∗ are then found by maximizing welfare W (G, s) less the

cost of the subsidy
∑n

i=1 siei, when firms are choosing output and effort for a given subsidy level by

maximizing profits in Equation (20). If we define net welfare as W (G, s) ≡ W (G, s)−
∑n

i=1 eisi, then

the solution to the social planner’s problem is given by

s∗ = argmaxs∈[0,s̄]nW (G, s).

The following proposition derives the Nash equilibrium quantities and efforts (second stage) and the

optimal subsidy levels that solve the planner’s problem (first stage).

Proposition 3. Consider the n–player simultaneous move game with profits given by Equation (20)

where firms choose quantities and efforts in the strategy space in Rn
+ × Rn

+. Further, let µi, i ∈ N be

defined as in Proposition 1.

30To guarantee non-negative marginal costs see also Footnote 28.
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(i) If Equation (5) holds, then the matrix M = (In+ ρB−ϕA)−1 exists, and the unique interior Nash

equilibrium in quantities with subsidies (in the second stage) is given by

q = q̃+Rs, (21)

where R = M (In + ϕA), q̃ = Mµ, equilibrium efforts are given by ei = qi + si and profits are

given by

πi =
q2i + s2i

2
, (22)

for all i = 1, . . . , n.

(ii) Assume that goods are not substitutable, i.e. ρ = 0. Then if the matrix H ≡ In +2
(
In −R⊤

)
R is

positive definite, the optimal subsidy levels (in the first stage) are given by

s∗ = H−1(2R− In)q̃,

provided that 0 < qi < q̄ and 0 < s∗i < s̄ for all i = 1, . . . , n.

(iii) Assume that goods are substitutable, i.e. ρ > 0. Then, if the matrix H ≡ In+2
(
In −R⊤

(
In + ρ

2B
))

R

is positive definite, the optimal subsidy levels (in the first stage) are given by

s∗ =2
(
H+H⊤

)−1 (
2R⊤

(
In +

ρ

2
B
)
− In

)
q̃,

provided that 0 < qi < q̄ and 0 < s∗i < s̄ for all i = 1, . . . , n.

As in the previous proposition, in part (i) of Proposition 3, we solve for the second stage of the

game where firms decide their output given the targeted subsidy si. In parts (ii) and (iii), we solve

the first stage of the model when the planner optimally decides the targeted subsidy per R&D effort

when goods are substitutable (i.e. ρ > 0), and when they are not (i.e. ρ = 0). We are able to

determine the exact value of the optimal subsidy to be given to each firm embedded in a network

of R&D collaborations in both cases.31 We will use the results of these two propositions below to

empirically study subsidies in the presence of R&D collaborations between firms in our dataset.

In the following sections we will test the different parts of our theoretical predictions. First, we

will test Proposition 1 and try to disentangle between the technology (or knowledge) spillover effect

and the product rivalry effect of R&D. Second, once the parameters of the model have been estimated,

we will use Propositions 2 and 3, respectively, to determine which firms should be subsidized, and how

large their subsidies should be in order to maximize net welfare.

6. Data

To obtain a comprehensive picture of R&D alliances, we use data on interfirm R&D collaborations

stemming from two sources that have been widely used in the literature [cf. Schilling, 2009]. The first

one is the Cooperative Agreements and Technology Indicators (CATI) database [cf. Hagedoorn, 2002].

31Note that when the condition for positive definiteness is not satisfied then we can sill use parts (ii) or (iii) of
Proposition 3, respectively, as a candidate for a welfare improving subsidy program. However, there might exist other
subsidy programs which yield even higher welfare gains.
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This database only records agreements for which a combined innovative activity or an exchange of

technology is at least part of the agreement.32 The second source is the Thomson Securities Data Com-

pany (SDC) alliance database. SDC collects data from the U.S. Securities and Exchange Commission

(SEC) filings (and their international counterparts), trade publications, wires, and news sources. We

include only alliances from SDC that are classified explicitly as R&D collaborations.33 Supplementary

Appendix G.1 provides more information about the different R&D collaboration databases used for

this study.

We then merged the CATI database with the Thomson SDC alliance database. For the matching

of firms across datasets we used the name matching algorithm developed as part of the NBER patent

data project [Atalay et al., 2011; Trajtenberg et al., 2009].34 The merged datasets allow us to study

patterns in R&D partnerships in several industries over an extended period of several decades.

The systematic collection of inter-firm alliances started in 1987 and ended in 2006 for the CATI

database. However, information about alliances prior to 1987 is available in both databases, and we

use all information available starting from the year 1963 and ending in 2006.35 We construct the R&D

alliance network by assuming that an alliance lasts 5 years [similar to e.g. Rosenkopf and Padula,

2008].36 In the robustness section below (Section 8.1), we will test our model for different durations

of an alliance.

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over time,

and this will impact the R&D collaboration network [cf. e.g. Hanaki et al., 2010]. We account for

M&A activities by assuming that an acquiring firm inherits all the R&D collaborations of the target

firm. We use two complementary data sources to obtain comprehensive information about M&As.

The first is the Thomson Reuters’ SDC M&A database, which has historically been the reference

database for empirical research in the field of M&As. The second database for M&As is Bureau van

Dijk’s Zephyr database, which is an alternative to the SDC M&As database. A comparison and more

detailed discussion of the two M&As databases can be found in the supplementary Appendix G.2 and

Bena et al. [2008].

Figure 2 shows the number of firms, n, participating in an alliance in the R&D network, the

average degree, d̄, the degree variance, σ2
d, and the degree coefficient of variation, cv = σd/d̄, over the

years 1990 to 2005. It can be seen that there are very large variations over the years in the number

of firms having an R&D alliance with other firms. Starting from 1990, we observe a strong increase

(due to the IT boom) followed by a steady decline from 1997 onwards. Both, the average number of

32As noted in the Introduction, firms might benefit from each other’s research beyond what is captured by the network
of R&D collaborations. Thus, in Section 8.2, we also define R&D collaborations between firms more broadly by their
degree of technological proximity.

33Schilling [2009] compares different alliance databases, including CATI and SDC that we are using for this study, and
suggests a combination of both to obtain a good coverage of R&D collaborations across sectors.

34See https://sites.google.com/site/patentdataproject. We thank Enghin Atalay and Ali Hortacsu for making
their name matching algorithm available to us.

35Fama and French [1992] note that Compustat suffers from a large selection bias prior to 1962, and we discard any
data prior to 1962 from our sample.

36Rosenkopf and Padula [2008] use a five-year moving window assuming that alliances have a five-year life span, and
state that the choice of a five-year window is consistent with extant alliance studies [e.g. Gulati and Gargiulo, 1999;
Stuart, 2000] and conforms to Kogut [1988] finding that the normal life span of most alliances is no more than five years.
Moreover, Harrigan [1988] studies 895 alliances from 1924 to 1985 and concludes that the average life-span of the alliance
is relatively short, 3.5 years, with a standard deviation of 5.8 years and 85 % of these alliances last less than 10 years.
Park and Russo [1996] focus on 204 joint ventures among firms in the electronic industry for the period 1979–1988. They
show that less than half of these firms remain active beyond a period of five years and for those that last less than 10
years (2/3 of the total), the average lifetime turns out to be 3.9 years.
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Figure 2: The number of firms, n, participating in an alliance, the average degree, d̄, the degree variance, σ2
d, and the

degree coefficient of variation, cv = σd/d̄.

alliances per firm (captured by the average degree d̄), as well as the degree variance σ2
d follow a similar

pattern. In contrast, the degree coefficient of variation, cv, has first decreased and then increased over

the years.

In Figure 3, exemplary plots of the largest connected component in the R&D network for the years

1990, 1995, 2000 and 2005 are shown.37 The giant component has a core-periphery structure with

many R&D interactions between firms from different sectors.38

The combined CATI-SDC database provides the names for each firm in an alliance, but does not

contain balance sheet information. We thus matched the firms’ names in the CATI-SDC database

with the firms’ names in Standard & Poor’s Compustat U.S. annual fundamentals database, as well

as Bureau van Dijk’s Osiris database, to obtain information about their balance sheets and income

statements [see e.g. Dai, 2012]. Compustat and Osiris only contain firms listed on the stock market,

so they typically exclude smaller firms. However, they should capture the most R&D intensive firms,

as R&D is typically concentrated in publicly listed firms [cf. e.g. Bloom et al., 2013]. Supplementary

Appendix G.3 provides additional details about the accounting databases used in this study.

For the purpose of matching firms across databases, we again use the above mentioned name

matching algorithm. We could match roughly 26% of the firms in the alliance data (considering only

firms with accounting information available). From our match between the firms’ names in the alliance

database and the firms’ names in the Compustat and Osiris databases, we obtained a firm’s sales and

R&D expenditures. Individual firms’ output levels are computed from deflated sales using 2-SIC digit

industry-year specific price deflators from the OECD-STAN database [cf. Gal, 2013].39 Furthermore,

37See supplementary Appendix B.1 for the definition of a connected component.
38See also Figure G.1 in supplementary Appendix G.1.
39In Section 8.3, as a robustness check, we consider three alternative specifications of the competition matrix based
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(a) 1990 (b) 1995

(c) 2000 (d) 2005

Figure 3: Network snapshots of the largest connected component for the years (a) 1990, (b) 1995, (c) 2000 and (d) 2005.
Nodes’ sizes and shades indicate their targeted subsidies (see Section 9). The names of the 5 highest subsidized firms
are indicated in the network.
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Table 1: Summary statistics computed across the years 1967 to 2006.

Variable Obs. Mean Std. Dev. Min. Max. Compustat Mean

Sales [106] 21,067 2,101.56 7,733.29 9.98×10−8 168,055.80 1,085.05
Empl. 19,709 16,694.82 51,299.36 1 876,800.00 4,322.08
Capital [106] 20,873 1,629.29 7,388.32 3.82×10−8 170,437.40 663.44
R&D Exp. [106] 18,629 70.75 287.42 5.56×10−4 6,621.19 14.71
R&D Exp. / Empl. 17,203 20,207.79 55,887.27 3.37 2,568,507.00 4,060.12
R&D Stock [106] 17,584 406.87 1,520.97 5.58×10−3 22,292.97 33.13
Num. Patents 12,177 2,588.31 7,814.59 1 76,644.00 14.39

Notes: Values for sales, capital and R&D expenses are in U.S. dollars with 1983 as the base year. Com-
pustat means are computed across all firms in the Compustat U.S. fundamentals annual database over all
non-missing observations over the years 1967 to 2006.

we use information on R&D expenditures to compute R&D capital stocks using a perpetual inventory

method with a 15% depreciation rate (following Hall et al. [2000] and Bloom et al. [2013]). Considering

only firms with non-missing observations on sales, output and R&D expenditures we end up with a

sample of 1, 186 firms and a total of 1010 collaborations over the years 1967 to 2006.40

The empirical distributions for output P (q) (using a logarithmic binning of the data with 100 bins)

and the degree distribution P (d) are shown in Figure 4. Both are highly skewed, indicating a large

degree of inequality in the number of goods produced as well as the number of R&D collaborations.

Industry totals are computed across all firms in the Compustat U.S. fundamentals database (without

missing observations). Basic summary statistics can be seen in Table 1. The table shows that the

R&D collaborating firms in our sample are typically larger and have higher R&D expenditures than

the average across all firms in the Compustat database. This is consistent with previous studies which

found that cooperating firms tend to be larger and more R&D intensive [cf. e.g. Belderbos et al.,

2004].

7. Econometric Analysis

7.1. Econometric Specification

In this section, we introduce the econometric equivalent to the equilibrium quantity produced by each

firm given in Equation (13). Our empirical counterpart of the marginal cost cit of firm i from Equation

(2) at period t has a fixed cost equal to c̄it = η∗i − ϵit − xitβ, and thus we get

cit = η∗i − ϵit − βxit − eit − ϕ
n∑

j=1

aij,tejt, (23)

where xit is a measure for the productivity of firm i, η∗i captures the unobserved (to the econome-

trician) time-invariant characteristics of the firms, and ϵit captures the remaining unobserved (to the

econometrician) characteristics of the firms.

Following Equation (1), the inverse demand function for firm i is given by

pit = ᾱm + ᾱt − qit − ρ
n∑

j=1

bijqjt, (24)

on the primary and secondary industry classification codes that can be found in the Compustat Segments and Orbis
databases [cf. Bloom et al., 2013], or using the Hoberg-Phillips product similarity indicators [cf. Hoberg and Phillips ,
2016].

40See the supplementary Appendix G for a discussion about the representativeness of our data sample, and Section
8.4 for a discussion about the impact of missing data on our estimation results.
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Figure 4: Empirical output distribution P (q) and the distribution of degree P (d) for the years 1990 to 2005. The data
for output has been logarithmically binned and non-positive data entries have been discarded. Both distributions are
highly skewed.

where bij = 1 if i and j are in the same market and zero otherwise. In this equation, ᾱm indicates

the market-specific fixed effect and ᾱt captures the time fixed effect due to exogenous demand shifters

that affect consumer income, number of consumers (population), consumer taste and preferences, and

expectations over future prices of complements and substitutes or future income.

Denote by κt ≡ ᾱt and ηi ≡ ᾱm − η∗i . Observe that κt captures the time fixed effect while ηi,

which includes both ᾱm and η∗i , captures the firm fixed effect. Then, proceeding as in Section 3 (see,

in particular the proof of Proposition 1), adding subscript t for time and using Equations (23) and

(24), the econometric model equivalent to the best-response quantity in Equation (13) is given by

qit = ϕ
n∑

j=1

aij,tqjt − ρ
n∑

j=1

bijqjt + βxit + ηi + κt + ϵit. (25)

Observe that the econometric specification in Equation (25) has a similar specification as the product

competition and technology spillover production function estimation in Bloom et al. [2013] where the

estimation of ϕ will give the intensity of the technology (or knowledge) spillover effect of R&D, while

the estimation of ρ will give the intensity of the product rivalry effect. However, as opposed to these

authors, we explicitly take into account the technology spillovers stemming from R&D collaborations

by using a network approach.

In vector-matrix form, we can write Equation (25) as

qt = ϕAtqt − ρBqt + xtβ + η + κtun + ϵt, (26)

where qt = (q1t, · · · , qnt)⊤, At = [aij,t], B = [bij], xt = (x1t, · · · , xnt)⊤, η = (η1, · · · , ηn)⊤, ϵt =

(ϵ1t, · · · , ϵnt)⊤, and un is an n-dimensional vector of ones.

For the T periods, Equation (26) can be written as

q = ϕdiag{At}q− ρ(IT ⊗B)q+ xβ + uT ⊗ η + κ⊗ un + ϵ, (27)

where q = (q⊤
1 , · · · ,q⊤

T )
⊤, x = (x⊤

1 , · · · ,x⊤
T )

⊤, κ = (κ1, · · · ,κT )⊤, and ϵ = (ϵ⊤1 , · · · , ϵ⊤T )⊤. The

vectors q, x and ϵ are of dimension (nT × 1), where T is the number of years available in the data.

In terms of data, our main variables will be measured as follows. Output qit is calculated using

sales divided by the year-industry price deflators from the OECD-STAN database [cf. Gal, 2013]. The
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Figure 5: The empirical competition matrix B = (bij)1≤i,j≤n measured by 4-digit level industry SIC codes.

network data stems from the combined CATI-SDC databases and we set aij,t = 1 if there exists an

R&D collaboration between firms i and j in the last s years before time t, where s is the duration of an

alliance.41 The exogenous variable xit is the firm’s time-lagged R&D stock at the time t−1. Finally, we

measure bij as in the theoretical model so that bij = 1 if firms i and j are the same industry (measured

by the industry SIC codes at the 4-digit level) and bij = 0 otherwise. The empirical competition matrix

B can be seen in Figure 5. The block-diagonal structure indicating different markets is clearly visible.

7.2. Identification Issues

We adopt a structural approach in the sense that we estimate the first-order condition of the firms’

profit maximization problem in terms of output and R&D effort, which lead to Equations (25) and

(26). The best-response quantity in Equation (26) then corresponds to a higher-order Spatial Auto-

Regressive (SAR) model with two spatial lags, Atqt and Bqt [cf. Lee and Liu, 2010].

There are several potential identification problems in the estimation of Equation (25) or (26). We

face, actually, four sources of potential bias42 arising from (i) correlated or common-shock effects, (ii)

simultaneity of qit and qjt, (iii) endogeneity of the R&D stock, and (iv) endogenous network formation.

7.2.1. Correlated or Common-Shock Effects

Correlated or common-shock effects arise in network models due to the fact that there may be common

environmental factors that affect the behavior of members of the same network in a similar manner.

They may be confounded with the network effects (i.e. ϕ and ρ) we are trying to identify. To alleviate

this problem, we incorporate both firm and time fixed effects (i.e. ηi and κt) to the outcome Equation

(25).

7.2.2. Simultaneity of Product Quantities

We use instrumental variables when estimating our outcome Equation (25) to deal with the issue of

simultaneity of qit and qjt. Indeed, the output of firm i at time t, qit, is a function of the total output

41For the benchmark estimation results reported in Table 2, we set s = 5. We report estimation results with different
lengths of alliance durations in Tables 6 and 7, and find that the results are robust.

42It should be clear that there is no exogenous contextual effect (and thus no reflection problem) in Equation (25).
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of all firms collaborating in R&D with firm i at time t, i.e. q̄a,it ≡
∑n

j=1 aij,tqjt, and the total output

of all firms that operate in the same market as firm i, i.e. q̄b,it ≡
∑n

j=1 bijqjt. Due the feedback effect,

qjt also depends on qit and, thus, q̄a,it and q̄b,it are endogenous.

Recall that xit denotes the time-lagged R&D stock of firm i at the time t − 1. To deal with this

issue, we instrument q̄a,it by the time-lagged total R&D stock of all firms with an R&D collaboration

with firm i, i.e.
∑n

j=1 aij,txjt, and instrument q̄b,it by the time-lagged total R&D stock of all firms that

operate in the same industry as firm i, i.e.
∑n

j=1 bijxjt. The rationale for this IV strategy is that the

time-lagged total R&D stock of R&D collaborators and product competitors of firm i directly affects

the total output of these firms but only indirectly affects the output of firm i through the total output

of these same firms.

More formally, to estimate Equation (27), first we transform it with the projector J = (IT −
1
T uTu

⊤
T )⊗ (In − 1

nunu
⊤
n ). The transformed Equation (27) is

Jq = ϕJdiag{At}q− ρJ(IT ⊗B)q+ Jxβ + Jϵ, (28)

where the firm and time fixed effects η and κ have been cancelled out.43 Let Q1 = J[diag{At}x, (IT ⊗
B)x,x] denote the IV matrix and Z = J[diag{At}q, (IT ⊗B)q,x] denote the matrix of regressors in

Equation (28). As there is a single exogenous variable in Equation (28), the model is just-identified.

The IV estimator of parameters (ϕ,−ρ,β)⊤ is given by (Q⊤
1 Z)

−1Q⊤
1 q. With the estimated (ϕ,−ρ,β)⊤,

one can recover η and κ by the least squares dummy variables method.

Obviously, the above IV-based identification strategy is valid only if the time-lagged R&D stock,

xi,t−1, and the R&D alliance matrix, At = [aij,t], are exogenous. In Section 7.2.3 we address the

potential endogeneity of the time-lagged R&D stock, while the endogeneity of the R&D alliance

matrix is discussed in Section 7.2.4.

7.2.3. Endogeneity of the R&D Stock

To deal with the potential endogeneity of the time-lagged R&D stock, we use supply side shocks

from tax-induced changes to the user cost of R&D to construct instrumental variables as in Bloom

et al. [2013],44 where we use changes in the firm-specific tax price of R&D to construct instrumental

variables for R&D expenditures. To be more specific, let wit denote the time-lagged R&D tax credit

firm i received at time t − 1.45 We instrument q̄a,it by the time-lagged total R&D tax credits of all

firms with an R&D collaboration with firm i, i.e.
∑n

j=1 aij,twjt, instrument q̄b,it by the time-lagged

total R&D tax credits of all firms that operate in the same industry as firm i, i.e.
∑n

j=1 bijwjt, and

instrument the time-lagged R&D stock xit by the time-lagged R&D tax credit wit. The rationale

for this IV strategy is that the time-lagged total R&D credits of R&D collaborators and product

competitors of firm i directly affects the total output of these firms but only indirectly affects the

output of firm i through the total output of these same firms.

More formally, let Q2 = J[diag{At}w, (IT ⊗ B)w,w], where w = (w⊤
1 , · · · ,w⊤

T )
⊤ and wt =

(w1t, · · · , wnt)⊤, denote the IV matrix and Z = J[diag{At}q, (IT ⊗ B)q,x] denote the matrix of

regressors in Equation (28). The IV estimator of parameters (ϕ,−ρ,β)⊤ is given by (Q⊤
2 Z)

−1Q⊤
2 q.

43For unbalanced panels, the firm and time fixed effects can be eliminated by a projector given in Wansbeek and
Kapteyn [1989].

44We would like to thank Nick Bloom for making the tax credit data available to us.
45See Appendix B.3 in the Supplementary Material of Bloom et al. [2013] for details on the specification of wit.
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7.2.4. Endogenous Network Formation

The R&D alliance matrix At is endogenous if there exists an unobservable factor that affects both the

outputs, qit and qjt, and the R&D alliance, indicated by aij,t. If the unobservable factor is firm-specific,

then it is captured by the firm fixed-effect ηi. If the unobservable factor is time-specific, then it is

captured by the time fixed-effect κt. Therefore, the fixed effects in the panel data model are helpful

for attenuating the potential endogeneity of At.

However, it may still be that there are some unobservable firm-specific factors that do vary over

time and that affect the possibility of R&D collaborations and thus make the matrix At = [aij,t]

endogenous. To deal with this issue, we run a two-stage IV estimation as in Kelejian and Piras [2014]

where, in the first stage, we estimate a link formation model, and, in the second stage, we employ the

IV strategy explained above using IVs based on the predicted adjacency matrix from the first stage

link formation regression.

Let us now explain the first stage, i.e. the link formation model. We estimate a logistic regression

model with corresponding log-odds ratio [cf. Cameron and Trivedi, 2005]:

log

(
P
(
aij,t = 1 | (Aτ )

t−s−1
τ=1 , fij,t−s−1, cityij ,marketij

)

1− P
(
aij,t = 1 | (Aτ )

t−s−1
τ=1 , fij,t−s−1, cityij ,marketij

)

)

= γ0 + γ1 max
τ=1,...,t−s−1

aij,τ + γ2 max
τ=1,...,t−s−1

k=1,...,n

aik,τakj,τ + γ3fij,t−s−1 + γ4f
2
ij,t−s−1 + γ5cityij + γ6marketij,

(29)

where γ0, γ1, γ2, γ3, γ4, γ5 and γ6 are parameters governing the formation of R&D collaborations. In this

model, maxτ=1,...,t−s−1 aij,τ is a dummy variable, which is equal to 1 if firms i and j had an R&D collab-

oration before time t−s (s is the duration of an alliance) and 0 otherwise; maxτ=1,...,t−s−1;k=1,...,n aik,τakj,τ

is a dummy variable, which is equal to 1 if firms i and j had a common R&D collaborator before time

t− s and 0 otherwise; fij,t−s−1 is the time-lagged technological proximities between firms i and j (cf.

e.g. Sec. 3.5 in Nooteboom et al. [2006] and Powell and Grodal [2006]), measured here by either the

Jaffe or the Mahalanobis patent similarity indices at time t−s−1;46 cityij is a dummy variable, which

is equal to 1 if firms i and j are located in the same city and 0 otherwise; and marketij is a dummy

variable, which is equal to 1 if firms i and j are in the same market and 0 otherwise.47

The rationale for this IV solution is as follows. Take, for example, the dummy variable, which is

equal to 1 if firms i and j had a common R&D collaborator before time t− s, and 0 otherwise. This

means that, if firms i and j had a common collaborator in the past (i.e. before time t− s), then they

are more likely to have an R&D collaboration today, i.e. aij,t = 1, but, conditional on the firm and

time fixed effects, having a common collaborator in the past should not directly affect the outputs of

firms i and j today (i.e. the exclusion restriction is satisfied). A similar argument can be made for

46 We matched the firms in our alliance data with the owners of patents recorded in the Worldwide Patent Statistical
Database (PATSTAT). This allowed us to obtain the number of patents and the patent portfolio held for about 36% of
the firms in the alliance data. From the firms’ patents, we then computed their technological proximity following Jaffe

[1986] as fJ
ij =

P
⊤
i Pj√

P⊤
i
Pi

√

P⊤
j
Pj

, where Pi represents the patent portfolio of firm i and is a vector whose k-th component Pik

counts the number of patents firm i has in technology category k divided by the total number of technologies attributed
to the firm. As an alternative measure for technological similarity we also use the Mahalanobis proximity index fM

ij

introduced in Bloom et al. [2013]. Supplementary Appendix G.5 provides further details about the match of firms to
their patent portfolios and the construction of the technology proximity measures fk

ij , k ∈ {J,M}.
47Observe that the predictors for the link-formation probability are either time-lagged or predetermined so the IVs

constructed with Ât are less likely to suffer from any endogeneity issues.
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the other variables in Equation (29). As a result, using IVs based on the predicted adjacency matrix

Ât should alleviate the concern of invalid IVs due to the endogeneity of the adjacency matrix At.

Formally, let Q3 = J[diag{Ât}x, (IT ⊗B)x,x] denote the IV matrix based on the predicted R&D

alliance matrix and Z = [diag{At}q, (IT ⊗B)q,x] denote the matrix of regressors in Equation (28).

Then, the estimator of the parameters (ϕ,−ρ,β)⊤ with IVs based on the predicted adjacency matrix

is given by (Q⊤
2 Z)

−1Q⊤
3 q.

To summarize, we use the following step-wise procedure to implement our estimation method:

Step 1: Estimate the link formation model of Equation (29). Use the estimated model to predict

links. Denote the predicted adjacency matrix by Ât and its elements by âij,t.

Step 2: Estimate the outcome Equation (25) using
∑n

j=1 âij,txjt and
∑n

j=1 bijxjt as IVs for
∑n

j=1 aij,tqjt

and
∑n

j=1 bij,tqjt, respectively.

7.3. Estimation Results

7.3.1. Main results

Table 2 reports the parameter estimates of Equation (26) with only time fixed effects (Model A) and

with both firm and time fixed effects (Model B). In these regressions, we assume that the time-lagged

R&D stock and the R&D alliance matrix are exogenous. We see that, with both firm and time fixed

effects, the estimated parameters in Model B are statistically significant with the expected signs, i.e.,

the technology (or knowledge) spillover effect (estimate of ϕ) has a positive impact on own output

while the product rivalry effect (estimate of ρ) has negative impact on own output. However, without

controlling for firm fixed effects, the estimated technology spillover effect in Model A is negative.

As Equation (12) of the theoretical model suggests, a firm’s R&D effort is proportional to its

production level, the positive technology spillover effect indicates that the higher a firm’s production

level (or R&D effort) is, the more its R&D collaborator produces. That is, there exist strategic

complementarities between allied firms in production and R&D effort. On the other hand, the negative

product rivalry effect indicates the higher a firm’s production level (or R&D effort) is, the less its

product competitors in the same market produce. Furthermore, this table also shows that a firm’s

productivity captured by its own time-lagged R&D stock has a positive and significant impact on its

own production level. Finally, the Cragg-Donald Wald F statistics for both models are well above the

conventional benchmark for weak IVs [cf. Stock and Yogo, 2005].

7.3.2. Endogeneity of R&D Stocks and Tax-Credit Instruments

Table 3 reports the parameter estimates of Equation (26) with tax credits as IVs for the time-lagged

R&D stock as discussed in Section 7.2.3. Similarly to the benchmark results reported in Section 7.3.1,

with both firm and time fixed effects, the estimated parameters in Model D are statistically significant

with the expected signs, i.e., the technology (or knowledge) spillover effect is positive while the product

rivalry effect is negative. However, without firm fixed effects, the estimated technology spillover effect

in Model C is biased downward to become negative, which is similar to what we obtained without the

tax-credit instruments (Table 2). Furthermore, a firm’s productivity captured by its own time-lagged

R&D stock has a positive and significant impact on its own production level. Finally, the reported

Cragg-Donald Wald F statistics for both models suggest the IVs based on tax credits are informative.
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Table 2: Parameter estimates from a panel regression of Equation (26). Model
A includes only time fixed effects, while Model B includes both firm and time
fixed effects. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and
allow for first-order serial correlation using the Newey-West procedure. The
estimation is based on the observed alliances in the years 1967–2006.

Model A Model B

ϕ -0.0118 (0.0075) 0.0106** (0.0051)
ρ 0.0114*** (0.0015) 0.0189*** (0.0028)
β 0.0053*** (0.0002) 0.0027*** (0.0002)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 6454.185 7078.856

firm fixed effects no yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table 3: Parameter estimates from a panel regression of Equation (26) with IVs
based on time-lagged tax credits. Model C includes only time fixed effects, while
Model D includes both firm and time fixed effects. The dependent variable
is output obtained from deflated sales. Standard errors (in parentheses) are
robust to arbitrary heteroskedasticity and allow for first-order serial correlation
using the Newey-West procedure. The estimation is based on the observed
alliances in the years 1967–2006.

Model C Model D

ϕ -0.0133 (0.0114) 0.0128* (0.0069)
ρ 0.0182*** (0.0018) 0.0156** (0.0076)
β 0.0054*** (0.0004) 0.0023*** (0.0006)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 138.311 78.791

firm fixed effects no yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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Table 4: Link formation regression results. Technological
similarity, fij , is measured using either the Jaffe or the Ma-
halanobis patent similarity measures. The dependent vari-
able aij,t indicates if an R&D alliance exists between firms
i and j at time t. The estimation is based on the observed
alliances in the years 1967–2006.

technological similarity Jaffe Mahalanobis

Past collaboration 0.5980*** 0.5922***
(0.0150) (0.0149)

Past common collaborator 0.1161*** 0.1166***
(0.0238) (0.0236)

fij,t−s−1 13.6120*** 6.0518***
(0.6896) (0.3322)

f2
ij,t−s−1 -20.1916*** -3.8699***

(1.7420) (0.4623)
cityij 1.1299*** 1.1403***

(0.1017) (0.1017)
marketij 0.8450*** 0.8559***

(0.0424) (0.0422)

# observations 3,964,120 3,964,120
McFadden’s R2 0.0812 0.0813

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

7.3.3. Endogeneity of the R&D Network

Finally, we also consider IVs based on the predicted R&D alliance matrix, i.e. Âtxt, as discussed in

Section 7.2.3.

First, we obtain the predicted link-formation probability âij,t from the logistic regression given by

Equation (29). The logistic regression result, using either the Jaffe or Mahalanobis patent similar-

ity measures, is reported in Table 4. The estimated coefficients are all statistically significant with

expected signs. Interestingly, having a past collaboration or a past common collaborator, being estab-

lished in the same city, or operating in the same industry/market increases the probability that two

firms have an R&D collaboration today. Furthermore, being close in technology (measured by either

the Jaffe or Mahalanobis patent similarity measure) in the past also increases the chance of having an

R&D collaboration today, even though this relationship is concave.

Next, we estimate Equation (25) with IVs based on the predicted alliance matrix. The estimates

are reported in Table 5. We find that the estimates of both the technology spillovers and the product

rivalry effect are still significant with the expected signs. Compared to Table 2, the estimate of the

technology spillovers (i.e. the estimation of ϕ) has, however, a larger value and a larger standard

error. Finally, the reported Cragg-Donald Wald F statistics suggest the IVs based on the predicted

alliance matrix are informative.

8. Robustness Checks

8.1. Time Span of Alliances

In Section 7.3, we assume the duration of a R&D alliance is 5 years. Here, we analyze the impact of

different durations of an R&D alliance on the estimated spillover effect. The estimation results for

alliance durations ranging from 3 to 7 years are shown in Table 6. We find that the estimates are
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Table 5: Parameter estimates from a panel regression of Equation (26) with
endogenous R&D alliance matrix. The IVs are based on the predicted links
from the logistic regression reported in Table 4, where technological similarity is
measured using either the Jaffe or the Mahalanobis patent similarity measures.
The dependent variable is output obtained from deflated sales. Standard errors
(in parentheses) are robust to arbitrary heteroskedasticity and allow for first-
order serial correlation using the Newey-West procedure. The estimation is
based on the observed alliances in the years 1967–2006.

technological similarity Jaffe Mahalanobis

ϕ 0.0582* (0.0343) 0.0593* (0.0341)
ρ 0.0197*** (0.0031) 0.0197*** (0.0031)
β 0.0024*** (0.0002) 0.0024*** (0.0002)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 48.029 49.960

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

robust over the different durations considered.

However, our assumption that the duration is the same for all alliances may seem restrictive.

As a further robustness check, we randomly draw a life span for each alliance from an exponential

distribution with the mean ranging from 3 to 7 years. The estimation results are shown in Table 7.

We find that the estimates are still robust.

8.2. Direct and Indirect Technology Spillovers

In this section, we extend our empirical model of Equation (25) by allowing for both, direct (between

firms with an R&D alliance) and indirect (between firms without a R&D alliance) technology spillovers.

The generalized model is given by48

qit = ϕ
n∑

j=1

aij,tqjt + χ
n∑

j=1

fij,tqjt − ρ
n∑

j=1

bijqjt + βxit + ηi + κt + ϵit, (30)

where fij,t are weights characterizing alternative channels for technology spillovers (measured by the

technological proximity between firms using either the Jaffe or the Mahalanobis patent similarity

measures; see Bloom et al. [2013]) other than R&D collaborations, and the coefficients ϕ and χ

capture the direct and the indirect technology spillover effects, respectively. In vector-matrix form,

we then have

qt = ϕAtqt + χFtqt − ρBqt + xtβ + η + κtun + ϵt. (31)

The results of a fixed-effect panel regression of Equation (31) are shown in Table 8. Both technology

spillover coefficients, ϕ and χ, are positive, while only the direct spillover effect is significant. This

suggests R&D alliances are the main channel for technology spillovers.

48The theoretical foundation of Equation (30) can be found in supplementary Appendix F.
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Table 6: Parameter estimates from a panel regression of Equation (26) with both firm and time
fixed effects. The duration of an alliance ranges from 3 to 7 years. The dependent variable is
output obtained from deflated sales. Standard errors (in parentheses) are robust to arbitrary
heteroskedasticity and allow for first-order serial correlation using the Newey-West procedure.
The estimation is based on the observed alliances in the years 1967–2006.

alliance duration 3 years 4 years 5 years 6 years 7 years

ϕ 0.0131** 0.0119** 0.0106** 0.0089* 0.0077*
(0.0055) (0.0053) (0.0051) (0.0047) (0.0044)

ρ 0.0188*** 0.0188*** 0.0189*** 0.0189*** 0.0189***
(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

β 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

# firms 1186 1186 1186 1186 1186
# observations 16924 16924 16924 16924 16924
Cragg-Donald Wald F stat. 7064.104 7071.522 7078.856 7084.185 7096.780

firm fixed effects yes yes yes yes yes
time fixed effects yes yes yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table 7: Parameter estimates from a panel regression of Equation (26) with both firm and
time fixed effects. The duration of an alliance follows an exponential distribution with the
mean ranging from 3 to 7 years. The dependent variable is output obtained from deflated
sales. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for
first-order serial correlation using the Newey-West procedure. The estimation is based on the
observed alliances in the years 1967–2006.

average alliance duration 3 years 4 years 5 years 6 years 7 years

ϕ 0.0106** 0.0139*** 0.0113** 0.0140** 0.0074
(0.0046) (0.0046) (0.0052) (0.0057) (0.0048)

ρ 0.0186*** 0.0188*** 0.0187*** 0.0188*** 0.0187***
(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

β 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

# firms 1186 1186 1186 1186 1186
# observations 16924 16924 16924 16924 16924
Cragg-Donald Wald F stat. 7046.331 7063.207 7081.713 7080.294 7045.043

firm fixed effects yes yes yes yes yes
time fixed effects yes yes yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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Table 8: Parameter estimates from a panel regression of Equation (31) with
both firm and time fixed effects. Technological similarity, fij , is measured
using either the Jaffe or the Mahalanobis patent similarity measures. The
dependent variable is output obtained from deflated sales. Standard errors (in
parentheses) are robust to arbitrary heteroskedasticity and allow for first-order
serial correlation using the Newey-West procedure. The estimation is based on
the observed alliances in the years 1967–2006.

technological similarity Jaffe Mahalanobis

ϕ 0.0102** (0.0049) 0.0102** (0.0049)
χ 0.0063 (0.0052) 0.0043 (0.0030)
ρ 0.0189*** (0.0028) 0.0192** (0.0028)
β 0.0027*** (0.0002) 0.0027*** (0.0002)

# firms 1190 1190
# observations 17105 17105
Cragg-Donald Wald F stat. 4791.308 4303.563

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

8.3. Alternative Specifications of the Competition Matrix

In the empirical model estimated in Section 7.3, the entries of the competition matrix, B = [bij ], are

specified as indicator variables such that bij = 1 if firms i and j are the same industry (measured by

the industry SIC codes at the 4-digit level) and bij = 0 otherwise. Here, we consider three alternative

specifications of the competition matrix based on the primary and secondary industry classification

codes that can be found in the Compustat Segments and Orbis databases [cf. Bloom et al., 2013],49

or the Hoberg-Phillips product similarity measures [cf. Hoberg and Phillips , 2016].50

The estimation results of Equation (26) with alternative specifications of the competition matrix

are reported in Table 9. The estimated technology spillover effect is positively significant, with the

magnitude similar to that reported in Table 2, suggesting that the estimation of the spillover effect is

robust with respect to different specifications of the competition matrix. The magnitude of the product

rivalry effect reported in Table 9, on the other hand, is more difficult to compare with that reported

in Table 2, as they are based on different competition matrices. Nevertheless, the estimated product

rivalry effect with alternative specifications of the competition matrix is still statistically significant

with the expected sign.

8.4. Sampled Networks

The balance sheet data we used for the empirical analysis covers only publicly listed firms. It is now

well known that the estimation with sampled network data could lead to biased estimates [see, e.g.

Chandrasekhar and Lewis, 2011]. To investigate the direction and magnitude of the bias due to the

sampled network data, we conduct a limited simulation experiment. In the experiment, we randomly

drop 10%, 20%, and 30% of the firms (and the R&D alliances associated with the dropped firms)

49Our definition of the pairwise competition intensity is calculated as the Jaffe similarity score of the combined vectors
of primary and secondary industry codes (see also Footnote 46), and follows the product market proximity index suggested
in Bloom et al. [2013].

50The Hoberg-Phillips product similarity measures are based on firm pairwise similarity scores from text analysis of
the firms’ 10K product descriptions. See Hoberg and Phillips [2016] for further details and explanation.
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Table 9: Parameter estimates from a panel regression of Equation (26) with both firm and time
fixed effects. The competition matrix is based on the Compustat Segments, Orbis or Hoberg-Phillips
industry/product similarity measures. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for first-order
serial correlation using the Newey-West procedure. The estimation is based on the observed alliances
in the years 1967–2006.

competition matrix Compustat Orbis Hoberg-Phillips

ϕ 0.0089* (0.0049) 0.0110** (0.0051) 0.0096** (0.0048)
ρ 0.0526*** (0.0088) 0.0438*** (0.0077) 0.4753*** (0.0761)
β 0.0029*** (0.0002) 0.0027*** (0.0002) 0.0026*** (0.0002)

# firms 1199 1199 1199
# observations 17433 17433 17433
Cragg-Donald Wald F stat. 3638.903 3079.453 1.1 ×104

firm fixed effects yes yes yes
time fixed effects yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table 10: Parameter estimates from a panel regres-
sion of Equation (26) with both firm and time fixed
effects using a random subsample of the firms under
different sampling rates. The dependent variable is
output obtained from deflated sales. The empirical
mean and standard deviation (in parentheses) of the
estimates from 500 random subsamples are reported.
The estimation is based on the observed alliances in
the years 1967–2006.

sampling rate 90% 80% 70%

ϕ 0.0109 0.0114 0.0113
(0.0035) (0.0059) (0.0084)

ρ 0.0185 0.0187 0.0191
(0.0021) (0.0031) (0.0043)

β 0.0027 0.0027 0.0027
(0.0001) (0.0002) (0.0002)

firm fixed effects yes yes yes
time fixed effects yes yes yes

in our data (corresponding to the sampling rate of 90%, 80%, and 70%). For each sampling rate,

we randomly draw 500 subsamples and re-estimate Equation (26) for each subsample. We report

the empirical mean and standard deviation of the estimates for each sampling rate in Table 10. As

the sampling rate reduces, the standard deviation of the estimates increases while the mean remains

roughly the same. This simulation result alleviates the concern on the estimation bias due to sampling

(i.e. missing data).

9. Empirical Implications for the R&D Subsidy Policy

With our estimates from the previous sections (using Model B in Table 2 as our baseline specification)

we are now able to empirically determine the optimal subsidy policy, both for the homogenous case,

where all firms receive the same subsidy per unit of R&D (see Proposition 2), and for the targeted case,
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Figure 6: (Top left panel) The total optimal subsidy payments, s∗∥e∥1, in the homogeneous case over time, using the
subsidies in the year 1990 as the base level. (Top right panel) The percentage increase in welfare due to the homogeneous
subsidy, s∗, over time. (Bottom left panel) The total subsidy payments, e⊤s∗, when the subsidies are targeted towards
specific firms, using the subsidies in the year 1990 as the base level. (Bottom right panel) The percentage increase in
welfare due to the targeted subsidies, s∗, over time.
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where the subsidy per unit of R&D may vary across firms (see Proposition 3).51 Our policy results will

be network contingent, that is, once the network changes, the policy changes accordingly. In other

words, our policy reacts to changes in the network, and we specify how, for any observed network

structure the R&D policy should be specified. For this reason we will calculate the optimal subsidy

for each firm in every year. The rationale is that in an uncertain and highly dynamic environment

such as the R&D intensive markets that we consider here an optimal contingent policy is typically

preferable over a fixed policy [cf. Buiter, 1981].

In Figure 6, in the top panel, we calculate the optimal homogenous subsidy times R&D effort

over time, using the subsidies in the year 1990 as the base level (top left panel), and the percentage

increase in welfare due to the homogenous subsidy over time (top right panel). The total subsidized

R&D effort more than doubled over the time between 1990 and 2005. In terms of welfare, the highest

increase (around 3.5 %) is obtained in the year 2001, while the increase in welfare in 1990 is smaller

(below 2.5 %). The bottom panel of Figure 6 does the same exercise for the targeted subsidy policy.

The largest total expenditures on the targeted subsidies are higher than the ones for the homogeneous

subsidies, and they can also vary by several orders of magnitude. The targeted subsidy program also

turns out to have a much higher impact on total welfare, as it can improve welfare by up to 80 %,

while the homogeneous subsidies can improve total welfare only by up to 3.5 %.52 Moreover, the

optimal subsidy levels show a strong variation over time. Both the homogeneous and the aggregate

targeted subsidy seem to follow a cyclical trend (while this pattern seems to be more pronounced

for the targeted subsidy), similar to the strong variation we have observed for the number of firms

participating in R&D collaborations in a given year in Figure 2. This cyclical trend is also reminiscent

of the R&D expenditures observed in the empirical literature on business cycles [cf. Gaĺı, 1999].

We can compare the optimal subsidy level predicted from our model with the R&D tax subsidies

actually implemented in the United States and selected other countries between 1979 to 1997 [see

Bloom et al., 2002; Impullitti, 2010]. While these time series typically show a steady increase of R&D

subsidies over time, they do not seem to incorporate the cyclicality that we obtain for the optimal

subsidy levels. Our analysis thus suggests that policy makers should adjust R&D subsidies to these

cycles.

We next proceed by providing a ranking of firms in terms of targeted subsidies.53 Such a ranking

can guide a planner who wants to maximize total welfare by introducing an R&D subsidy program,

identify which firms should receive the highest subsidies, and how high these subsidies should be. The

ranking of the first 25 firms by their optimal subsidy levels in 1990 can be found in Table 11 while the

one for 2005 is shown in Table 12.54 We see that the ranking of firms in terms of subsidies does not

correspond to other rankings in terms of network centrality, patent stocks or market share.

There is also volatility in the ranking since many firms that are ranked in the top 25 in 1990 are

no longer there in 2005 (for example TRW Inc., Alcoa Inc., Schlumberger Ltd. Inc., etc.). Figure

7 shows the change in the ranking of the 25 highest subsidized firms (Table 11) from 1990 to 2005.

51Additional details about the numerical implementation of the optimal subsidies program can be found in supple-
mentary Appendix H.

52Note that similarly large welfare effects of firm-specific R&D subsidies can be found in Akcigit [2009].
53Relatedly, Takalo et al. [2013a] analyze the welfare effects of targeted R&D subsidies using project-level data from

Finland.
54The network statistics shown in these tables correspond to the full CATI-SDC network dataset, prior to dropping

firms with missing accounting information. See supplementary Appendix G.1 for more details about the data sources
and construction of the R&D alliances network.
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24 Bellsouth Corp.
25 Nynex

Figure 7: Change in the ranking of the 25 highest subsidized firms (Table 11) from 1990 to 2005.
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Figure 8: The transition matrix Tij from the rank i in year t to the rank j in year t+ 1 for the homogeneous subsidies
ranking (left panel) and the targeted subsidies ranking (right panel) for the first 100 ranks.

32



m
ar
ke
t
sh
.

R
&
D

st
.

p
at
.
nu

m
.

d
eg
.

h
om

.
su
b
.

ta
r.

su
b
.

Correlation Matrix

-0.02

0.05

-0.020.05

0.750.240.440.460.16

0.750.440.520.610.21

0.240.440.280.44

0.440.520.280.65

0.460.610.440.650.11

0.160.210.11

market sh. R&D st. pat. num. deg. hom. sub. tar. sub.

0 0.5 1 20 30 40 0 10 20 30 0 50 100 30 35 0 50 100150

0

0.5

1

20

30

40

0

10

20

30

0

50

100

30

35

0
50

100
150

Figure 9: Pair correlation plot of market shares, R&D stocks, the number of patents, the degree, the homogeneous
subsidies and the targeted subsidies (cf. Table 12), in the year 2005. The Spearman correlation coefficients are shown
for each scatter plot. The data have been log and square root transformed to account for the heterogeneity in across
observations.

Figure 8 shows the transition probability Tij from a rank i in year t to a rank j in year t+ 1 for the

first 100 ranks, both for the homogeneous subsidies as well as the targeted subsidies. We observe that

in both cases the subsidy rankings are quite stable over time (with the homogeneous subsidies being

slightly more stable than the targeted subsidies), where most transitions occur along the diagonal of

Tij . There is a larger variation at the bottom right corner of Tij and less variation at the top left

corner, showing that the upper ranks are more stable than the lower ranks.

A comparison of market shares, R&D stocks, the number of patents, the degree (i.e. the number

of R&D collaborations), the homogeneous subsidy and the targeted subsidy shows a high correlation

between the R&D stock and the number of patents, with a (Spearman) correlation coefficient of 0.65

for the year 2005. A high correlation can also be found for the homogeneous subsidy and the targeted

subsidy, with a correlation coefficient of 0.75 for the year 2005. The corresponding pair correlation

plots for the year 2005 can be seen in Figure 9. We also find that highly subsidized firms tend to have

a larger R&D stock, and also a larger number of patents, degree and market share. However, these

measures can only partially explain the subsidies ranking of the firms, as the market share is more

related to the product market rivalry effect, while the R&D and patent stocks are more related to the

technology spillover effect, and both enter into the computation of the optimal subsidy program.

Observe that our subsidy rankings typically favor larger firms as they tend to be better connected

in the R&D network than small firms.55 This adds to the discussion of whether large or small firms

are contributing more to the innovativeness of an economy [cf. Mandel, 2011],56 by adding another

55We further find a significant correlation between R&D stock and the optimal (homogeneous) subsidy levels of 0.59
in the year 1990 and 0.61 in the year 2005. See also Figure 9.

56See also “Big and clever. Why large firms are often more inventive than small ones.” The Economist (2011, Dec.
17th). Retrieved from http://www.economist.com.

33



dimension along which larger firms can have an advantage over small ones, namely by creating R&D

spillover effects that contribute to the overall productivity of the economy.57 While studies such as

Spencer and Brander [1983] and Acemoglu et al. [2012] find that R&D should often be taxed rather

than subsidized, we find in line with e.g. Hinloopen [2001] that R&D subsidies can have a significantly

positive effect on welfare. As argued by Hinloopen [2001], the reason why our results differ from those

of Spencer and Brander [1983] is that we take into account the consumer surplus when deriving the

optimal R&D subsidy. Moreover, in contrast to Acemoglu et al. [2012], we do not focus on entry and

exit but incorporate the network of R&D collaborating firms. This allows us to take into account

the R&D spillover effects of incumbent firms, which are typically ignored in studies of the innovative

activity of incumbent firms versus entrants. Therefore, we see our analysis as complementary to that

of Acemoglu et al. [2012], and we show that R&D subsidies can trigger considerable welfare gains

when technology spillovers through R&D alliances are incorporated.

10. Conclusion

In this paper, we have developed a model where firms benefit form R&D collaborations (networks)

to lower their production costs while at the same time competing on the product market. We have

highlighted the positive role of the network in terms of technology spillovers and the negative role of

product rivalry in terms of market competition. We have also determined the importance of targeted

subsidies on the total welfare of the economy.

Using a panel of R&D alliance networks and annual reports, we have then tested our theoretical

results and first showed that both, the technology spillover effect and the market competition effect

have the expected signs and are significant. We have also identified the firms in our data that should

be subsidized the most to maximize welfare in the economy. Finally, we have drawn some policy

conclusions about optimal R&D subsidies from the results obtained over different sectors, as well as

their temporal variation.

We believe that the methodology developed in this paper offers a fruitful way of analyzing the

existence of R&D spillovers and their policy implications in terms of firms’ subsidies across and within

different industries. We also believe that putting forward the role of networks in terms of R&D

collaborations is important to understanding the different aspects of these markets.

57Our findings regarding the pro-welfare effect of R&D conducted by large firms is in line with the results obtained by
Bloom et al. [2013], where it is noted that “...smaller firms generate lower social returns to R&D because they operate
more in technological niches.”
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Bramoullé, Y., Djebbari, H. and B. Fortin (2009). Identification of peer effects through social networks.
Journal of Econometrics 150(1), 41–55.

Buiter, Willem H. (1981). The Superiority of Contingent Rules Over Fixed Rules in Models with
Rational Expectations. The Economic Journal 91(363), 647–670.

Byong-Hun, A. (1983). Iterative methods for linear complementarity problems with upperbounds on
primary variables. Mathematical Programming 26(3), 295–315.
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Appendix

A. Proofs

We first state a lemma that will be needed for the proof of Proposition 1.

Lemma 1. Let A and B be two symmetric, real matrices and assume that the inverse A−1 exists and is
non-negative and also that B is non-negative. Provided that λmax(A−1B) < 1 we have that

(i) the following series expansion exists

(A+B)−1 =
∞∑

k=0

(−1)k(A−1B)kA−1,

(ii) for any x ∈ Rn
+ we have that A−1Bx < x, and

(iii) if also A−1x > 0 then (A+B)−1x > 0.

Proof of Lemma 1 (i) Notice that

(A+B)−1 = (A(In +A−1B))−1

= (In +A−1B))−1A−1

=
∞∑

k=0

(−1)k(A−1B)kA−1,

where the Neumann series expansion for (In +A−1B))−1 can be applied if λmax(A−1B) < 1.

(ii) Observe that λmax(A−1B) < 1 is equivalent to A−1Bx < x for any x ∈ Rn
+. To see this consider an

orthonormal basis of Rn spanned by the eigenvectors of A−1B. Then we can write x =
∑n

i=1 civi with
suitable coefficients ci = x⊤vi/(v⊤

i vi) and A−1Bvi = λivi. It then follows that

A−1Bx =
n∑

i=1

ciλivi ≤ λmax(A
−1B)

n∑

i=1

civi = λmax(A
−1B)x.

Hence, if λmax(A−1B) < 1 it must hold that A−1Bx < x.

(iii) We can write the series expansion of the inverse as follows

(A+B)−1x =
∞∑

k=0

(−1)k(A−1B)kA−1x = A−1x−A−1BA−1x+A−1BA−1BA−1x− . . . .

By assumption we have that A−1x ≥ 0. Then denote by x̃ = A−1x ≥ 0. Then the first two terms in the
series can be written as

(In −A−1B)A−1x = (In −A−1B)x̃ > 0,

where the inequality follows from part (ii) of the lemma. Next, consider the third and fourth terms in the
series expansion

(A−1BA−1B−A−1BA−1BA−1B)x̃ = A−1BA−1B(In −A−1B)x̃ ≥ 0,

where the inequality follows again from the fact that (In − A−1B)x̃ > 0 from part (ii) of the lemma and
the assumption that A−1 and B are non-negative matrices. We can then iterate by induction to show the
desired claim.

Proof of Proposition 1 We start by providing a condition on the marginal cost c̄i such that all
firms choose an interior R&D effort level. The marginal cost of firm i from Equation (2) can be written
as

ci = max

⎧
⎨

⎩0, c̄i − ei − ϕ
n∑

j=1

aijej

⎫
⎬

⎭ . (32)
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ei

ϕ
∑n

j=1 aijej
c̄i

qi

c̄i − ϕ
∑n

j=1 aijej

ci = 0

ei

ϕ
∑n

j=1 aijej
c̄i

qi

c̄i − ϕ
∑n

j=1 aijej

ci = 0

Figure A.1: The best response effort level, ei, of firm i for qi < c̄i − ϕ
∑n

j=1 aijej (left panel) and qi > c̄i −ϕ
∑n

j=1 aijej
(right panel).

The profit function of Equation (3) can then be written as

πi = (pi − ci)qi −
1

2
e2i =

{
piqi − 1

2e
2
i , if c̄i ≤ ei + ϕ

∑n
j=1 aijej ,

(pi − c̄i + ei + ϕ
∑n

j=1 aijej)qi −
1
2e

2
i , otherwise.

It is clear that when c̄i ≤ ϕ
∑n

j=1 aijej the profit of firm i is decreasing with ei, and hence, firm i sets
ei = 0. On the other hand, if c̄i > ϕ

∑n
j=1 aijej then for all 0 ≤ ei < c̄i − ϕ

∑n
j=1 aijej we have that

∂πi
∂ei

= qi − ei = 0,

so that we obtain ei = qi. Moreover, when qi > c̄i − ϕ
∑n

j=1 aijej then the effort of firm i is given by
ei = c̄i − ϕ

∑n
j=1 aijej . It then follows that the best response effort level of firm i is given by

ei =

⎧
⎪⎨

⎪⎩

0, if c̄i < ϕ
∑n

j=1 aijej,

c̄i − ϕ
∑n

j=1 aijej , if c̄i − ϕ
∑n

j=1 aijej ≤ qi,

qi, if c̄i − ϕ
∑n

j=1 aijej > qi.

An illustration of the best response effort level, ei, of firm i can be seen in Figure A.1. Note that with
qi ∈ [0, q̄] we must have that 0 ≤ ei ≤ qi ≤ q̄, and therefore

max
i∈N

⎧
⎨

⎩ei + ϕ
n∑

j=1

aijej

⎫
⎬

⎭ ≤ q̄(1 + ϕ(n− 1)).

Hence, requiring that
min
i∈N

c̄i > q̄(1 + ϕ(n− 1)), (33)

implies that the best response effort level of firm i is given by

ei = qi, (34)

and the marginal cost is given by ci = c̄i − ei − ϕ
∑n

j=1 aijej = c̄i − qi − ϕ
∑n

j=1 aijqj for all i ∈ N .
For the remainder of the proof we assume that this conditions is satisfied.

We next provide the proofs for the different parts of the proposition:

(i) The first derivative of the profit function with respect to the output qi of firm i is given by

∂πi
∂qi

= ᾱi − c̄i − 2qi − ρ
n∑

j=1

bijqj + ei + ϕ
n∑

j=1

aijej .
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Inserting the optimal R&D efforts, ei = qi, then gives

∂πi
∂qi

= (ᾱi − c̄i)− qi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj.

A Nash equilibrium is a vector q ∈ [0, q̄]n that satisfies the following system of equations: ∂πi
∂qi

=

0, ∀i ∈ N such that 0 < qi < q̄, ∂πi
∂qi

< 0, ∀i ∈ N such that qi = 0 and ∂πi
∂qi

> 0, ∀i ∈ N such that
qi = q̄. In the following we denote by µi ≡ ᾱi − c̄i. Then the Nash equilibrium output levels qi can
be found from the solution to the following equations

qi = 0, if −µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj > 0,

qi = µi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj, if −µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj = 0, (35)

qi = q̄, if −µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj < 0.

The problem of finding a vector q such that the conditions in (35) are satisfied is known as the
bounded linear complementarity problem (LCP) [Byong-Hun, 1983].58 The corresponding best
response function fi : [0, q̄]n−1 → [0, q̄] can be written compactly as follows:

fi(q−i) ≡ max

⎧
⎨

⎩0,min

⎧
⎨

⎩q̄, µi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj

⎫
⎬

⎭

⎫
⎬

⎭ . (36)

Since [0, q̄]n−1 is a convex compact subset of Rn−1 and f is a continuous function on this set, a
solution to the fixed point equation qi− f(q−i) = 0 is guaranteed to exist by Brouwer’s fixed point
theorem.

Observe that the bounded LCP in (35) is equivalent to the Kuhn-Tucker optimality conditions of
the following quadratic programming (QP) problem with box constraints [cf. Byong-Hun, 1983]:

min
q∈[0,q̄]n

{
−µ⊤q+

1

2
q⊤ (In + ρB− ϕA)q

}
. (37)

An alternative proof for the existence of an equilibrium then follows form the Frank-Wolfe Theorem
[Frank and Wolfe, 1956].59

Moreover, a unique solution is guaranteed to exist if ρ = 0 or when the matrix In + ρB − ϕA
is positive definite. The case of ρ = 0 has been analyzed in Belhaj et al. [2014]. The authors
show that a unique equilibrium exists when output levels are bounded for any value of the spillover
parameter ϕ. In the following we will provide sufficient conditions for positive definiteness (and
thus uniqueness) when ρ > 0.

Consider first the case of ϕ = 0. The matrix In + ρB is positive definite if and only if all its
eigenvalues are positive. The smallest eigenvalue of In + ρB is given by 1 + ρλmin(B). Then, all
eigenvalues are positive if λmin(B) > −1

ρ . The matrix B has elements bij ∈ {0, 1} and can be

written as a block diagonal matrix B ≡
∑M

m=1(umu⊤
m − Dm), with um being an n × 1 zero-one

vector with elements (um)i = 1 if i ∈ Mm and (um)i = 0 otherwise for all i = 1, . . . , n. Moreover,

58This is the linear version of the mixed complementarity problem analyzed in Simsek et al. [2005] and is similar to
the problem studied in Bloch and Quérou [2013]. For a detailed discussion and analysis of LCP see Cottle et al. [1992].

59The Frank-Wolfe Theorem states that if a quadratic function is bounded below on a nonempty polyhedron, then it
attains its infimum.
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ρ

ϕ

λPF(B)−1

λPF(A)−1

1

ϕ+ ρ < (max {λPF(A),λPF(B)})−1

ϕλPF(A) + ρλPF(B) < 1

multiple equilibria

Figure A.2: Illustration of the parameter regions where an equilibrium is unique, or multiple equilibria can exist.

Dm = diag(um) is the diagonal matrix with diagonal entries given by um. Since B is a block
diagonal matrix with zero diagonal and blocks of size |Mm|, m = 1, . . . ,M , the spectrum (set of
eigenvalues) of B is given by {|M1|− 1, |M2|− 1, ..., |MM | − 1,−1, . . . ,−1}. Hence, the smallest
eigenvalue of B is −1 and the condition for positive definiteness becomes −1 > −1

ρ , or equivalently,
ρ < 1, which holds by assumption.

Next we consider the case of ϕ > 0. The matrix In + ρB − ϕA is positive definite if its smallest
eigenvalue is positive, that is when λmin(ρB−ϕA)+1 > 0. This is equivalent to λPF(ϕA+(−ρ)B) <
1. Since λPF(ϕA + (−ρ)B) ≤ ϕλPF(A) + ρλPF(B),60 a sufficient condition is then given by
(ρ + ϕ)max{λPF(A),λPF(B)} < 1, or equivalently ρ + ϕ < (max{λPF(A),λPF(B)})−1. We have
that the largest eigenvalue of the matrix B is equal to the size of the largest market |Mm| minus
one (as this is a block-diagonal matrix with all elements being one in each block and zero diagonal),
so that a sufficient condition for invertibility (and thus uniqueness) is given by

ρ+ ϕ <

(
max

{
λPF(A), max

m=1,...,M
{(|Mm|− 1)}

})−1

.

Figure A.2 shows an illustration of the parameter regions where an equilibrium is unique, or multiple
equilibria can exist.

When the matrix In + ρB−ϕA is not positive definite, and we allow for ρ > 0, then the objective
function in Equation (37) will be non-convex, and there might exist multiple equilibria. Comput-
ing these equilibria can be done via numerical algorithms for solving box-constrained non-convex
quadratic programs [cf. e.g. Chen and Burer, 2012].61

(ii) We provide a characterization of the interior equilibrium, 0 < qi < q̄ for all i ∈ N . From the best
response function in Equation (36) we get

qi = µi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj. (38)

In matrix-vector notation it can be written as q = µ − ρBq + ϕAq or, equivalently, (In + ρB −
ϕA)q = µ.

We have assumed that the matrix In + ρB − ϕA is positive definite. This means that all its
eigenvalues are positive. Moreover, is its real and symmetric, and thus has only real eigenvalues.
A matrix is invertible, if its determinant is not zero. The determinant of a matrix is equivalent
to the product of its eigenvalues. Hence, if a matrix has only positive real eigenvalues, then its

60Let ∥ · ∥ be any matrix norm, including the spectral norm, which is just the largest eigenvalue. Then we have that
∥
∑n

i=1 αiAi∥ ≤
∑n

i=1 |αi|∥Ai∥ ≤
(∑n

i=1 |αi|
)
maxi ∥Ai∥ by Weyl’s theorem [cf. e.g. Horn and Johnson, 1990, Theorem

4.3.1].
61See also Equation (79) and below.
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determinant is not zero and it is invertible. When the inverse of In+ ρB−ϕA exists, we can write
equilibrium quantities as

q = (In + ρB− ϕA)−1µ.

We have shown that there exists a unique equilibrium given by q = (In + ρB − ϕA)−1µ, but we
have not yet shown that it is interior, i.e. qi > 0, ∀i ∈ N . Profits in equilibrium can be written as

πi = (ᾱi − c̄i)qi − ρqi

n∑

j=1

bijqj + ϕqi

n∑

j=1

aijqj −
1

2
q2i .

From Equation (38) it follows that

ρqi

n∑

j=1

bijqj − ϕqi

n∑

j=1

aijqj = ((ρB− ϕA)q)i

= qi((In + ρB− ϕA)q− q)i

= qi ((ᾱi − c̄i)− qi) , (39)

so that we can write equilibrium profits as

πi = (ᾱi − c̄i)qi − qi ((ᾱi − c̄i)− qi)−
1

2
q2i =

1

2
q2i . (40)

(iii) We assume that all firms operate in the same market so that M = 1. The first-order condition for
a firm i is given by Equation (38), which, when M = 1, can be written as

qi = µi − ρ
∑

j ̸=i

qj + ϕ
n∑

j=1

aijqj

Let us denote by q̂−i ≡
∑

j ̸=i qj the total output of all firms excluding firm i. The equation above
is equivalent to

qi = µi − ρq̂−i + ϕ
n∑

j=1

aijqj

We can now define q̂ ≡
∑

j ̸=i qj + qi, which corresponds to the total output of all firms (including
i). The equation above is now equivalent to

qi = µi − ρq̂ + ρqi + ϕ
n∑

j=1

aijqj ,

or

qi =
1

1− ρ
µi −

ρ

1− ρ
q̂ +

ϕ

1− ρ

n∑

j=1

aijqj. (41)

Observe that even if firms are local monopolies (i.e. ρ = 0) this solution is still well-defined.
Observe also that 1− ρ > 0 if and only if ρ < 1, which we assume throughout.

In matrix form, Equation (41) can be written as

(
In − ϕ

1− ρ
A

)
q =

1

1− ρ
µ− ρq̂

1− ρ
u,

where µ = (µ1, . . . , µn)
⊤, and u =(1, . . . , 1)⊤. Denote φ = ϕ/ (1− ρ). If φλPF(A) < 1, this is

equivalent to

q =
1

1− ρ
(In − φA)−1µ− ρq̂

1− ρ
(In − φA)−1 u.
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This equation is equivalent to

q =
1

1− ρ
(bµ(G,φ) − ρq̂ bu(G,φ)) , (42)

where bu(G,ϕ/ (1− ρ)) = (In − φA)−1 u is the unweighted vector of Bonacich centralities and
bµ(G,ϕ/ (1− ρ)) = (In − φA)−1 µ is the weighted vector of Bonacich centralities where the weights
are the µi for i = 1, . . . , n.62

We need now to calculate q̂. Multiplying Equation (42) to the left by u⊤, we obtain

(1− ρ) q̂ = ∥bµ(G,φ)∥1 − ρq̂ ∥bu(G,φ)∥1 ,

where

∥bµ(G,φ)∥1 = uTbµ(G,φ) =
n∑

i=1

bµi(G,φ) =
n∑

i=1

n∑

j=1

∞∑

p=0

φpa[p]ij µj ,

is the sum of the weighted Bonacich centralities and

∥bu(G,φ)∥1 = u⊤bu(G,φ) =
n∑

i=1

bu,i(G,φ) =
n∑

i=1

n∑

j=1

∞∑

p=0

φpa[p]ij

is the sum of the unweighted Bonacich centralities. Solving this equation, we get

q̂ =
∥bµ(G,φ)∥1

(1− ρ) + ρ ∥bu(G,φ)∥1

Plugging this value of q̂ into Equation (42), we finally obtain

qi =
1

1− ρ

(
bµ,i(G,φ) −

ρ ∥bµ(G,φ)∥1
1− ρ+ ρ ∥bu(G,φ)∥1

bu,i(G,φ)

)
. (43)

This corresponds to Equation (9) in the proposition.

In the following we provide conditions which guarantee that the equilibrium is always interior. For
that, we would like to show that qi > 0, ∀i = 1, . . . , n. Using Equation (43), this is equivalent to

bµ,i(G,φ) >
ρ ∥bµ(G,φ)∥1

1− ρ+ ρ ∥bu(G,φ)∥1
bu,i(G,φ), ∀i = 1, . . . , n. (44)

Denote by µ = mini {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with µ < µ. Then, ∀i = 1, . . . , n, we
have

∥bu(G,φ)∥1 =
n∑

i=1

n∑

j=1

∞∑

p=0

φpa[p]ij µj ≤ µ
n∑

i=1

n∑

j=1

∞∑

p=0

φpa[p]ij = µ ∥bu(G,φ)∥1

and

bµ,i(G,φ) =
n∑

j=1

∞∑

p=0

φpa[p]ij µj ≥ µ bu,i(G,φ) =
n∑

j=1

∞∑

p=0

φpa[p]ij µ

Thus, a sufficient condition for Equation (44) to hold is

µ bu,i(G,φ) >
ρµ ∥bu(G,φ)∥1

1− ρ+ ρ ∥bu(G,φ)∥1
bu,i(G,φ),

62A definition and further discussion of the Bonacich centrality is given in Appendix B.3.
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or equivalently

µ >
ρµ ∥bu(G,φ)∥1

1− ρ+ ρ ∥bu(G,φ)∥1
,

or

1− ρ > ρ ∥bu(G,φ)∥1
(
µ

µ
− 1

)
. (45)

Next, observe that, by definition

∥bu(G,φ)∥1 =
n∑

i=1

n∑

j=1

∞∑

p=0

φpa[p]ij =
∞∑

p=0

φpu⊤Apu. (46)

We know that λPF (Ap) = λPF (A)p, for all p ≥ 0.63 Also, u⊤Apu/n is the average connectivity
in the matrix Ap of paths of length p in the original network A, which is smaller than its spectral
radius λPF (A)p [Cvetkovic et al., 1995], i.e. u⊤Apu/n ≤ λPF (A)p. Therefore, Equation (46) leads
to the following inequality

∥bu(G,φ)∥1 =
∞∑

p=0

φpu⊤Apu ≤ n
∞∑

p=0

φpλPF (A)p =
n

1− φλPF (A)
.

A sufficient condition for Equation (45) to hold is thus

φλPF (A) +
nρ

1− ρ

(
µ

µ
− 1

)
< 1.

Clearly, this interior equilibrium is unique. This is the condition given in the proposition for case
(iii).

(ii) We now show that we have an interior equilibrium with all firms producing at positive quantity
levels, that is q = (In + ρB − ϕA)−1µ > 0. To do this we will apply Lemma 1. Let In − ϕA be
the matrix A in the lemma and ρB the corresponding matrix B. We have that both are real and
symmetric, and that B is a non-negative matrix. Furthermore, provided that ϕ < 1/λPF(A), the
inverse A−1 exists and is non-negative. Next, we need to show that λPF(A−1B) < 1, but this is
equivalent to λPF((In − ϕA)−1ρB) < 1. Note that

λPF((In − ϕA)−1ρB) = ρλPF((In − ϕA)−1B) ≤ ρλPF((In − ϕA)−1)λPF(B) =
ρλPF(B)

1− ϕλPF(A)
,

so that a sufficient condition is given by

ρλPF(B)

1− ϕλPF(A)
< 1,

which is implied by

ρλPF(B) = ρ max
m=1,...,M

{(|Mm|− 1)} < 1− ϕλPF(A).

The lemma then implies that (A+B)−1x > 0 for any vector x > 0, and in particular for the vector
µ, which is positive by assumption.

(iv) Assume that not only M = 1 but also µi = µ for all i = 1, . . . , n. If φλPF (A) < 1, the equilibrium

63Observe that the relationship λPF (Ap) = λPF (A)p, p ≥ 0, holds true for both symmetric as well as asymmetric
adjacency matrices A as long as A has non-negative entries, aij ≥ 0.
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condition in Equation (43) can be further simplified to

q =
µ

1− ρ+ ρ∥bu (G,φ) ∥1
bu (G,φ) .

It should be clear that the output is now always strictly positive.

(v) Assume that markets are independent and goods are non-substitutable (i.e., ρ = 0). If ϕ <
λPF(A)−1, the equilibrium quantity further simplifies to q = µbu (G,φ), which is always strictly
positive.

(vi) Finally, the equilibrium profit and effort follow from Equations (40) and (34).

Proof of Proposition 2 (i) We first introduce a lower bound on the effort independent marginal
cost c̄i such that the marginal cost ci is strictly positive in equilibrium. We then must have that
c̄i > ei + ϕ

∑n
j=1 aijej and the profit function of firm i can be written as Equation (17). The FOC

of profits with respect to effort is
∂πi
∂ei

= qi − ei + s = 0,

so that equilibrium effort is
ei = qi + s.

Requiring non-negative marginal cost then implies that c̄i > qi + s + ϕ
∑n

j=1 aijej . A sufficient
condition for this to hold for all firms i ∈ N is given by

max
i∈N

c̄i > q̄ + s̄+ ϕ
n∑

j=1

aij(q̄ + s̄) = (1 + ϕ(n − 1))(q̄ + s̄). (47)

The marginal change of profits with respect to output is given by

∂πi
∂qi

= (ᾱ− c̄i)− 2qi − ρ
∑

j ̸=i

bijqj + ei + ϕ
n∑

j=1

aijej,

where we have denoted by µi ≡ ᾱ− c̄i. Inserting equilibrium efforts gives

qi = 0, if − µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj − s(1 + ϕdi) > 0,

qi = µi − ρ
∑

j ̸=i

bijqj + ϕ
n∑

j=1

aijqj + s(1 + ϕdi), if − µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj − s(1 + ϕdi) = 0,

qi = q̄, if − µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj − s(1 + ϕdi) < 0,

(48)

where di =
∑n

j=1 aij is the degree of firm i. The problem of finding a vector q such that the
conditions in (48) hold is known as the bounded linear complementarity problem [Byong-Hun,
1983]. The corresponding best response function fi : [0, q̄]n−1 → [0, q̄] can be written compactly as
follows:

fi(q−i) ≡ max

⎧
⎨

⎩0,min

⎧
⎨

⎩q̄, µi + s(1 + ϕdi)− ρ
∑

j ̸=i

bijqj + ϕ
n∑

j=1

aijqj

⎫
⎬

⎭

⎫
⎬

⎭ . (49)

We observe that the firm’s output is increasing with the subsidy s, and this increase is higher for
firms with a larger number of collaborations, di. Existence and uniqueness follow under the same
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conditions as in the proof of Proposition 1.64

In the following we provide a characterization of the interior equilibrium. In vector-matrix notation
we then can write for the interior output levels

(In + ρB− ϕA)q = µ+ su+ ϕsAu.

The equilibrium output can further be written as follows

q = q̃+ sr,

where we have denoted by

q̃ ≡ (In + ρB− ϕA)−1µ = Mµ

r ≡ ϕ(In + ρB− ϕA)−1

(
1

ϕ
In +A

)
u = Mu+ ϕMd,

where M ≡ (In + ρB − ϕA)−1. The vector q̃ gives equilibrium quantities in the absence of the
subsidy and is derived in Section 3. The vector r has elements ri for i = 1, . . . , n. Furthermore,
equilibrium profits are given by

πi =
1

2
q2i +

1

2
s2,

(ii) Net social welfare is given by

W (G, s) = W (G, s)− s
n∑

i=1

ei =
n∑

i=1

(
q2i + πi − sei

)
=

n∑

i=1

q2i − s
n∑

i=1

qi −
n

2
s2.

Using the fact that qi = q̃i + sri, where

q̃ = (In − ϕA)−1µ = Mµ

r = ϕ(In − ϕA)−1

(
1

ϕ
In +A

)
u = µ+ ϕd,

we can write net welfare as follows

W (G, s) =
n∑

i=1

(q̃i + ris)
2 −

n∑

i=1

(q̃i + ris)−
n

2
s2.

The FOC of net welfare W (G, s) is given by

∂W (G, s)

∂s
= 2

n∑

i=1

q̃i (2ri − 1) + s
n∑

i=1

(
2r2i − 2ri − 1

)
= 0,

from which we obtain the optimal subsidy level

s∗ =

∑n
i=1 q̃i (1− 2ri)∑n

i=1 (ri (2ri − 2)− 1)
,

where the equilibrium quantities are given by Equation (18). For the second-order derivative we
obtain

∂2W (G, s)

∂s2
= −

n∑

i=1

(
−2r2i + 2ri + 1

)
,

and we have an interior solution if the condition
∑n

i=1

(
−2r2i + 2ri + 1

)
≥ 0 is satisfied.

64To see this simply replace µi with µi + s(1 + ϕdi) in the proof of Proposition 1.
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(iii) Net welfare can be written as

W (G, s) =
1

2

n∑

i=1

q2i +
ρ

2

n∑

i=1

n∑

j ̸=i

bijqiqj +
n∑

i=1

πi − s
n∑

i=1

ei

=
n∑

i=1

q2i +
n

2
s2 +

ρ

2

n∑

i=1

n∑

j ̸=i

bijqiqj −
n∑

i=1

(qi + s)s.

Using the fact that qi = q̃i + sri, where

q̃ ≡ (In + ρB− ϕA)−1µ

r ≡ ϕ(In + ρB− ϕA)−1

(
1

ϕ
In +A

)
u,

we can write net welfare as follows

W (G, s) =
n∑

i=1

(q̃i + ris)
2 − ns2 +

ρ

2

n∑

i=1

n∑

j ̸=i

bij(q̃i + sri)(q̃j + srj)−
n∑

i=1

(q̃is+ ris
2).

The FOC of net welfare W (G, s) is given by

∂W (G, s)

∂s
=

n∑

i=1

(
2q̃iri − q̃i +

ρ

2
bij(q̃irj + q̃jri)

)
+ s

n∑

i=1

⎛

⎝2r2i − 2ri − 1 + ρ
n∑

j=1

bijrirj

⎞

⎠ = 0,

from which we obtain the optimal subsidy level

s∗ =

∑n
i=1

(
q̃i(2ri + 1) + ρ

2

∑n
j=1 bij(q̃irj + q̃jri)

)

∑n
i=1

(
1 + ri

(
2− 2ri − ρ

∑n
j=1 bijrj

)) ,

where the equilibrium quantities are given by Equation (18). The second-order derivative is given
by

∂2W (G, s)

∂s2
= −

n∑

i=1

⎛

⎝−2r2i + 2ri + 1− ρ
n∑

j=1

bijrirj.

⎞

⎠ .

Hence, the solution is interior if
∑n

i=1

(
−2r2i + 2ri + 1− ρ

∑n
j=1 bijrirj

)
≥ 0.

Proof of Proposition 3 (i) Under the same conditions as in the proof of Proposition 2 we have
that the marginal cost is non-negative. The FOC of profits from Equation (20) with respect to
effort then is

∂πi
∂ei

= qi − ei + si = 0,

so that equilibrium effort is
ei = qi + si.

The marginal change of profits with respect to output is given by

∂πi
∂qi

= µi − 2qi − ρ
∑

j ̸=i

bijqj + ei + ϕ
n∑

j=1

aijej ,

49



where we have denoted by µi ≡ ᾱ− c̄i. Inserting equilibrium efforts gives

qi = 0, if − µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj − si − ϕ
n∑

j=1

aijsj > 0,

qi = µi − ρ
∑

j ̸=i

bijqj + ϕ
n∑

j=1

aijqj + si + ϕ
n∑

j=1

aijsj, if − µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj − si − ϕ
n∑

j=1

aijsj = 0,

qi = q̄, if − µi + qi + ρ
n∑

j=1

bijqj − ϕ
n∑

j=1

aijqj − si − ϕ
n∑

j=1

aijsj < 0.

(50)

The problem of finding a vector q such that the conditions in (50) hold is known as the bounded
linear complementarity problem [cf. Byong-Hun, 1983]. The corresponding best response function
fi : [0, q̄]n−1 → [0, q̄] can be written compactly as follows:

fi(q−i) ≡ max

⎧
⎨

⎩0,min

⎧
⎨

⎩q̄, µi − ρ
∑

j ̸=i

bijqj + ϕ
n∑

j=1

aijqj + si + ϕ
n∑

j=1

aijsj

⎫
⎬

⎭

⎫
⎬

⎭ . (51)

We observe that the firm’s output is increasing with the unit subsidy si of firm i, and the total
amount of subsidies received by firms collaborating with firm i. Existence and uniqueness follow
under the same conditions as in the proof of Proposition 1.65

In the following we assume that these conditions are met and we focus on the characterization of
an interior equilibrium. In vector-matrix notation equilibrium output levels can be written as

(In + ρB− ϕA)q = µ+ s+ ϕAs.

We then can write
q = q̃+Rs,

where we have denoted by

q̃ ≡ (In + ρB− ϕA)−1µ = Mµ,

R ≡ (In + ρB− ϕA)−1 (In + ϕA) = M+ ϕMA,

with M = (In + ρB − ϕA)−1. The matrix R has elements rij for 1 ≤ i, j ≤ n. Furthermore, one
can show that equilibrium profits are given by

πi =
1

2
q2i +

1

2
s2i .

(ii) Net welfare can be written as follows

W (G, s) =
n∑

i=1

(
q2i
2

+ πi − siei

)
=

n∑

i=1

q2i −
n∑

i=1

qisi −
1

2

n∑

i=1

s2i .

Using the fact that qi = q̃i+rijsj, with q̃ = (In−ϕA)−1µ = Mµ, and R = (In−ϕA)−1 (In + ϕA),
where R is symmetric, i.e. R⊤ = R, we can write net welfare as follows

W (G, s) =
n∑

i=1

q̃2i −
n∑

i=1

q̃isi −
1

2

n∑

i=1

s2i +
n∑

i=1

⎛

⎝
n∑

j=1

rijsj

⎞

⎠

⎛

⎝2q̃i +
n∑

j=1

rijsj − si

⎞

⎠ . (52)

65To see this simply replace µi with µi + si + ϕ
∑n

j=1 aijsj in the proof of Proposition 1.
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Equation (52) can be written in vector-matrix notation as follows

W (G, s) = q̃⊤q̃− s⊤(In − 2R)q̃ − 1

2
s⊤
(
In + 2(In −R⊤)R

)
s.

Denoting by H ≡ In + 2(In −R⊤)R and c⊤ ≡ q̃⊤(In − 2R) we find that maximizing net welfare
is equivalent to solving the following quadratic programming problem [cf. Lee et al., 2005; Nocedal
and Wright, 2006]: mins∈[0,s̄]n+

{
c⊤s+ 1

2s
⊤Hs

}
. The FOC for net welfare W (G, s) of Equation (52)

yields the following system of linear equations

∂W (G, s)

∂s
= −q̃⊤(In − 2R)−

(
In + 2(In −R⊤)R

)
s = 0.

This can be written as
(
In + 2(In −R⊤)R

)
s = (2R − In)q̃. When the conditions for invertibility

of the matrix H are satisfied, it follows that the optimal subsidy levels can be written as

s∗ = H−1(2R− In)q̃, (53)

with q̃ = (In − ϕA)−1µ = bµ. The second-order derivative (Hessian) is given by

∂2W (G, s)

∂s∂s⊤
= −H.

Hence, we obtain a global maximum for the concave quadratic optimization problem if the matrix
H is positive definite, which means that it is also invertible and its inverse is also positive definite.

(iii) In the case of interdependent markets, when goods are substitutable, net welfare can be written as

W (G, s) =
1

2

⎛

⎝
n∑

i=1

q2i + ρ
n∑

i=1

n∑

j ̸=i

bijqiqj

⎞

⎠+
n∑

i=1

πi −
n∑

i=1

siei

=
n∑

i=1

q2i −
n∑

i=1

qisi −
1

2

n∑

i=1

s2i +
ρ

2

n∑

i=1

n∑

j ̸=i

bijqiqj.

Using the fact that qi = q̃i+rijsj, with q̃ ≡ (In+ρB−ϕA)−1µ andR ≡ (In+ρB−ϕA)−1 (In + ϕA),
where R is in general not symmetric, unless AB = BA,66 we can write net welfare as follows

W (G, s) = q̃⊤q̃+
ρ

2
q̃⊤Bq̃− q̃⊤ (In − ρBR− 2R) s− 1

2
s⊤
(
In + 2

(
In − ρ

2
R⊤B−R⊤

)
R
)
s. (54)

If we denote by

H ≡ In + 2
(
In −R⊤

(
In +

ρ

2
B
))

R,

and c⊤ ≡ q̃⊤ (In − 2R− ρBR) we find that maximizing net welfare is equivalent to solving
the following quadratic programming problem [cf. Lee et al., 2005; Nocedal and Wright, 2006]:
mins∈Rn

+

{
c⊤s+ 1

2s
⊤Hs

}
, where we can replace H with the symmetric matrix 1

2

(
H⊤ +H

)
to ob-

tain an equivalent problem. The FOC from Equation (54) is given by

∂W (G, s)

∂s
= −

(
In −R⊤

(
In +

ρ

2
B
))

q̃− 1

2

(
H+H⊤

)
s.

When the matrix H+H⊤ is invertible, the optimal subsidy levels can be written as

s∗ =2
(
H+H⊤

)−1 (
2R⊤

(
In +

ρ

2
B
)
− In

)
q̃, (55)

66While the inverse of a symmetric matrix is symmetric, the product of symmetric matrices is not necessarily symmetric.
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where the equilibrium quantities in the absence of the subsidy are given by q̃ = (In+ρB−ϕA)−1µ.
The second-order derivative (Hessian) is given by

∂2W (G, s)

∂s∂s⊤
= −1

2

(
H+H⊤

)
.

Hence, we obtain a global maximum for the concave quadratic optimization problem if the matrix
H + H⊤ is positive definite. Note that if this matrix is positive definite then it is also invertible
and its inverse is also positive definite.
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B. Definitions and Characterizations

B.1. Network Definitions

A network (graph) G ∈ Gn is the pair (N , E) consisting of a set of nodes (vertices) N = {1, . . . , n}
and a set of edges (links) E ⊂ N ×N between them, where Gn denotes the family of undirected graphs
with n nodes. A link (i, j) is incident with nodes i and j. The neighborhood of a node i ∈ N is the set
Ni = {j ∈ N : (i, j) ∈ E}. The degree di of a node i ∈ N gives the number of links incident to node

i. Clearly, di = |Ni|. Let N (2)
i =

⋃
j∈Ni

Nj\ (Ni ∪ {i}) denote the second-order neighbors of node i.

Similarly, the k-th order neighborhood of node i is defined recursively from N (0)
i = {i}, N (1)

i = Ni and

N (k)
i =

⋃
j∈N (k−1)

i

Nj\
(⋃k−1

l=0 N (l)
i

)
. A walk in G of length k from i to j is a sequence ⟨i0, i1, . . . , ik⟩

of nodes such that i0 = i, ik = j, ip ̸= ip+1, and ip and ip+1 are (directly) linked, that is ipip+1 ∈ E ,
for all 0 ≤ p ≤ k − 1. Nodes i and j are said to be indirectly linked in G if there exists a walk from i
to j in G containing nodes other than i and j. A pair of nodes i and j is connected if they are either
directly or indirectly linked. A node i ∈ N is isolated in G if Ni = ∅. The network G is said to be
empty (denoted by K̄n) when all its nodes are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′) ⊆ N (G), and links, E(G′) ⊆ E(G).
A graph G is connected, if there is a path connecting every pair of nodes. Otherwise G is disconnected.
The components of a graph G are the maximally connected subgraphs. A component is said to be
minimally connected if the removal of any link makes the component disconnected.

A dominating set for a graph G = (N , E) is a subset S of N such that every node not in S is
connected to at least one member of S by a link. An independent set is a set of nodes in a graph in
which no two nodes are adjacent. For example the central node in a star K1,n−1 forms a dominating
set while the peripheral nodes form an independent set.

Let G = (N , E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and let
d0 = 0 (even if no agent with degree 0 exists in G). Furthermore, define Di = {v ∈ N : dv = d(i)}
for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the degree partition of
G. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be its degree partition.
Then the nodes N can be partitioned in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating set⋃k

i=⌊k
2⌋+1Di in the graph G′ = (N\D0, E). Moreover, the neighborhoods of the nodes are nested.

In particular, for each node v ∈ Di, Nv =
⋃i

j=1Dk+1−j if i = 1, . . . ,
⌊
k
2

⌋
if i = 1, . . . , k, while

Nv =
⋃i

j=1Dk+1−j \ {v} if i =
⌊
k
2

⌋
+ 1, . . . , k.

In a complete graph Kn, every node is adjacent to every other node. The graph in which no pair
of nodes is adjacent is the empty graph K̄n. A clique Kn′ , n′ ≤ n, is a complete subgraph of the
network G. A graph is k-regular if every node i has the same number of links di = k for all i ∈ N .
The complete graph Kn is (n− 1)-regular. The cycle Cn is 2-regular. In a bipartite graph there exists
a partition of the nodes in two disjoint sets V1 and V2 such that each link connects a node in V1 to a
node in V2. V1 and V2 are independent sets with cardinalities n1 and n2, respectively. In a complete
bipartite graph Kn1,n2 each node in V1 is connected to each other node in V2. The star K1,n−1 is a
complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph Ḡ with the same nodes as G such that any two nodes of
Ḡ are adjacent if and only if they are not adjacent in G. For example the complement of the complete
graph Kn is the empty graph K̄n.
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Let A be the symmetric n × n adjacency matrix of the network G. The element aij ∈ {0, 1}
indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and aij = 0 if
(i, j) /∈ E . The k-th power of the adjacency matrix is related to walks of length k in the graph. In
particular,

(
Ak
)
ij

gives the number of walks of length k from node i to node j. The eigenvalues of
the adjacency matrix A are the numbers λ1,λ2, . . . ,λn such that Avi = λivi has a nonzero solution
vector vi, which is an eigenvector associated with λi for i = 1, . . . , n. Since the adjacency matrix A of
an undirected graph G is real and symmetric, the eigenvalues of A are real, λi ∈ R for all i = 1, . . . , n.
Moreover, if vi and vj are eigenvectors for different eigenvalues, λi ̸= λj, then vi and vj are orthogonal,
i.e. v⊤

i vj = 0 if i ̸= j. In particular, Rn has an orthonormal basis consisting of eigenvectors ofA. Since
A is a real symmetric matrix, there exists an orthogonal matrix S such that S⊤S = SS⊤ = I (that
is S⊤ = S−1) and S⊤AS = D, where D is the diagonal matrix of eigenvalues of A and the columns
of S are the corresponding eigenvectors. The Perron-Frobenius eigenvalue λPF(G) is the largest real
eigenvalue of A associated with G, i.e. all eigenvalues λi of A satisfy |λi| ≤ λPF(G) for i = 1, . . . , n
and there exists an associated nonnegative eigenvector vPF ≥ 0 such that AvPF = λPF(G)vPF. For a
connected graph G the adjacency matrix A has a unique largest real eigenvalue λPF(G) and a positive
associated eigenvector vPF > 0. The largest eigenvalue λPF(G) has been suggested to measure the
irregularity of a graph [Bell, 1992], and the components of the associated eigenvector vPF are a measure
for the centrality of a node in the network. A measure Cv : G → [0, 1] for the centralization of the
network G has been introduced by Freeman [1979] for generic centrality measures v. In particular,
the centralization Cv of G is defined as Cv(G) ≡

∑
i∈G (vi∗ − vi) /maxG′∈Gn

∑
j∈G′ (vj∗ − vj), where

i∗ and j∗ are the nodes with the highest values of centrality in the networks G, G′, respectively, and
the maximum in the denominator is computed over all networks G′ ∈ Gn with the same number n
of nodes. There also exists a relation between the number of walks in a graph and its eigenvalues.
The number of closed walks of length k from a node i in G to herself is given by

(
Ak
)
ii
and the total

number of closed walks of length k in G is tr
(
Ak
)
=
∑n

i=1

(
Ak
)
ii
=
∑n

i=1 λ
k
i . We further have that

tr (A) = 0, tr
(
A2
)
gives twice the number of links in G and tr

(
A3
)
gives six times the number of

triangles in G.
The cores of a graph are defined as follows: Given a network G, the induced subgraph Gk ⊆ G

is the k-core of G if it is the largest subgraph such that the degree of all nodes in Gk is at least k.
Note that the cores of a graph are nested such that Gk+1 ⊆ Gk. Cores can be used as a measure of
centrality in the network G, and the largest k-core centrality across all nodes in the graph is called
the degeneracy of G. Note that k-cores can be obtained by a simple pruning algorithm: at each step,
we remove all nodes with degree less than k. We repeat this procedure until there exist no such nodes
or all nodes are removed. We define the coreness of each node as follows: The coreness of node i, cori,
is k if and only if i ∈ Gk and i /∈ Gk+1. We have that cori ≤ di. However, there is no other relation
between the degree and coreness of nodes in a graph.

Finally, a nested split graph is a graph with a nested neighborhood structure such that the set of
neighbors of each node is contained in the set of neighbors of each higher degree node [Cvetkovic
and Rowlinson, 1990; Mahadev and Peled, 1995]. A nested split graph is characterized by a stepwise

adjacency matrix A, which is a symmetric, binary (n×n)-matrix with elements aij satisfying the following
condition: if i < j and aij = 1 then ahk = 1 whenever h < k ≤ j and h ≤ i. Both, the complete graph,
Kn, as well as the star K1,n−1, are particular examples of nested split graphs. Nested split graphs are
also the graphs which maximize the largest eigenvalue, λPF(G), [Brualdi and Solheid, 1986], and they
are the ones that maximize the degree variance [Peled et al., 1999]. See for example König et al. [2014]
for a discussion of further properties of nested split graphs.

B.2. Walk Generating Functions

Denote by u = (1, . . . , 1)⊤ the n-dimensional vector of ones and define M(G,φ) = (In−φA)−1. Then,
the quantity NG(φ) = u⊤M(G,φ)u is the walk generating function of the graph G [cf. Cvetkovic et al.,
1995]. Let Nk denote the number of walks of length k in G. Then we can write Nk as follows

Nk =
n∑

i=1

n∑

j=1

a[k]ij = u⊤Aku,
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where a[k]ij is the ij-th element of Ak. The walk generating function is then defined as

NG(φ) ≡
∞∑

k=0

Nkφ
k = u⊤

(
∞∑

k=0

φkAk

)

u = u⊤ (In − φA)−1 u = u⊤M(G,φ)u.

For a k-regular graph Gk, the walk generating function is equal to

NGk
(φ) =

n

1− kφ
.

For example, the cycle Cn on n nodes (see Figure B.1, left panel) is a 2-regular graph and its walk
generating function is given by NCn(φ) =

1
1−2φ . As another example, consider the star K1,n−1 with n

nodes (see Figure B.1, middle panel). Then the walk generating function is given by

NK1,n−1(φ) =
n+ 2(n − 1)φ

1− (n− 1)φ2
.

In general, it holds that NG(0) = n, and one can show that NG(φ) ≥ 0. We further have that

M(G,φ) = (In − φA)−1 =
∞∑

k=0

φkAk =
∞∑

k=0

φkSΛkS⊤,

where Λ ≡ diag(λ1, . . . ,λn) is the diagonal matrix containing the eigenvalues of the real, symmetric
matrix A, and S is an orthogonal matrix with columns given by the orthogonal eigenvectors of A (with
S⊤ = S−1), and we have used the fact that A = SΛS⊤ [Horn and Johnson, 1990]. The eigenvectors
vi have the property that Avi = λivi and are normalized such that v⊤

i vi = 1. Note that A = SΛS⊤

is equivalent to A =
∑n

i=1 λiviv
⊤
i . It then follows that

u⊤M(G,φ)u = u⊤S

∞∑

k=0

φkΛkS⊤u,

where

S⊤u =
(
u⊤v1, . . . ,u

⊤vn

)⊤
,

and

Λk =

⎛

⎜⎜⎜⎝

λk
1 0 . . . 0
0 λk

2 . . . 0
...

. . .
...

0 . . . λk
n

⎞

⎟⎟⎟⎠
= λk

1

⎛

⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0
(
λ2
λ1

)k
. . . 0

...
. . .

...

0 . . .
(
λn
λ1

)k

⎞

⎟⎟⎟⎟⎟⎠
.

We then can write

u⊤M(G,φ)u =
∞∑

k=0

φkλk
1

(
u⊤v1, . . . ,u

⊤vn

)

⎛

⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0
(
λ2
λ1

)k
. . . 0

...
. . .

...

0 . . .
(
λn
λ1

)k

⎞

⎟⎟⎟⎟⎟⎠

(
u⊤v1, . . . ,u

⊤vn

)⊤
,
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which gives

u⊤M(G,φ)u =
∞∑

k=0

φkλk
1

(

(u⊤v1)
2 +

(
λ2

λ1

)k

(u⊤v2)
2 + . . .+

(
λn

λ1

)k

(u⊤vn)
2

)

=
n∑

i=1

(u⊤vi)
2

∞∑

k=0

φkλk
i

=
n∑

i=1

(u⊤vi)2

1− φλi
.

The above computation also shows that

Nk = u⊤Aku =
n∑

i=1

(u⊤vi)
2λk

i .

Hence, we can write the walk generating function as follows

NG(φ) = u⊤M(G,φ)u =
∞∑

k=0

Nkφ
k =

n∑

i=1

(v⊤
i u)

2

1− λiφ
.

If λ1 is much larger than λj for all j ≥ 2, then we can approximate

NG(φ) ≈ (u⊤v1)
2

∞∑

k=0

φkλk
1 =

(u⊤v1)2

1− φλ1
.

Moreover, there exists the following relationship between the largest eigenvalue λPF of the adjacency
matrix and the number of walks of length k in G [cf. Van Mieghem, 2011, p. 47]

λPF(G) ≥
(
Nk(G)

n

) 1
k

,

and, in particular,

lim
k→∞

(
Nk(G)

n

) 1
k

= λPF(G).

Hence, we have that nλPF(G)k ≥ Nk(G), and

NG(φ) =
∞∑

k=0

Nkφ
k ≤ n

∞∑

k=0

(λPF(G)φ)k =
n

1− φλPF(G)
. (56)

To derive a lower bound, note that for φ ≥ 0, NG(φ) is increasing in φ, so that NG(φ) ≥ N0 + φN1 +
φ2N2. Using the fact that N0 = n, N1 = 2m = nd̄ and N2 =

∑n
i=1 d

2
i = n(d̄2 + σ2

d), we then get the
lower bound

NG(φ) ≥ n+ 2mφ+ n(d̄2 + σ2
d)φ

2. (57)

Finally, Cvetkovic et al. [1995, p. 45] have found an alternative expression for the walk generating
function given by

NG(φ) =
1

φ

⎛

⎝(−1)n
cAc

(
− 1

φ − 1
)

cA
(

1
φ

) − 1

⎞

⎠ ,

where cA(φ) ≡ det (A− φIn) is the characteristic polynomial of the matrix A, whose roots are the
eigenvalues of A. It can be written as cA(φ) = φn − a1φn−1 + . . . + (−1)nan, where a1 = tr(A) and
an = det(A). Furthermore, Ac = uu⊤ − In −A is the complement of A, and uu⊤ is an n× n matrix
of ones. This is a convenient expression for the walk generating function, as there exist fast algorithms
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to compute the characteristic polynomial [Samuelson, 1942].

B.3. Bonacich Centrality

In the following we introduce a network measure capturing the centrality of a firm in the network due
to Katz [1953] and later extended by Bonacich [1987]. Let A be the symmetric n×n adjacency matrix
of the network G and λPF its largest real eigenvalue. The matrix M(G,φ) = (I−φA)−1 exists and is
non-negative if and only if φ < 1/λPF.67 Then

M(G,φ) =
∞∑

k=0

φkAk. (58)

The Bonacich centrality vector is given by

bu(G,φ) = M(G,φ) · u, (59)

where u = (1, . . . , 1)⊤. We can write the Bonacich centrality vector as

bu(G,φ) =
∞∑

k=0

φkAk · u = (I− φA)−1 · u.

For the components bu,i(G,φ), i = 1, . . . , n, we get

bu,i(G,φ) =
∞∑

k=0

φk(Ak · u)i =
∞∑

k=0

φk
n∑

j=1

(
Ak
)

ij
. (60)

The sum of the Bonacich centralities is then exactly the walk generating function we have introduced
in Section B.2

n∑

i=1

bu,i(G,φ) = u⊤bu(G,φ) = u⊤M(G,φ)u = NG(φ).

Moreover, because
∑n

j=1

(
Ak
)
ij

counts the number of all walks of length k in G starting from i,

bu,i(G,φ) is the number of all walks in G starting from i, where the walks of length k are weighted
by their geometrically decaying factor φk. In particular, we can decompose the Bonacich centrality as
follows

bi(G, ρ) = bii(G,φ)︸ ︷︷ ︸
closed walks

+
∑

j ̸=i

bij(G,φ)

︸ ︷︷ ︸
out-walks

, (61)

where bii(G,φ) counts all closed walks from firm i to i and
∑

j ̸=i bij(G,φ) counts all the other walks
from i to every other firm j ̸= i. Similarly, Ballester et al. [2006] define the intercentrality of firm
i ∈ N as

ci(G,φ) =
bi(G,φ)2

bii(G,φ)
, (62)

where the factor bii(G,φ) measures all closed walks starting and ending at firm i, discounted by the
factor φ, whereas bi(G,φ) measures the number of walks emanating at firm i, discounted by the factor
φ. The intercentrality index hence expresses the ratio of the (square of the) number of walks leaving
a firm i relative to the number of walks returning to i.

We give two examples in the following to illustrate the Bonacich centrality. The graphs used in
these examples are depicted in Figure B.1. First, consider the star K1,n−1 with n nodes (see Figure
B.1, middle panel) and assume w.l.o.g. that 1 is the index of the central node with maximum degree.

67The proof can be found e.g. in Debreu and Herstein [1953].
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Figure B.1: Illustration of a cycle C6, a star K1,6 and a complete graph, K6.

We now compute the Bonacich centrality for the star K1,n−1. We have that

M(K1,n−1,φ) = (I− φA)−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −φ · · · · · · −φ
−φ 1 0 0
... 0

. . .
. . .

...
. . .

...
...

... 0
−φ 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

=
1

1− (n− 1)φ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 φ · · · · · · φ
φ 1− (n− 2)φ2 φ2 φ2

... φ2 . . .
. . .

...
. . .

...
...

... φ2

φ φ2 · · · φ2 1− (n− 2)φ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since b = M · u we then get

b(K1,n−1,φ) =
1

1− (n− 1)φ2
(1 + (n− 1)φ, 1 + φ, . . . , 1 + φ)⊤ . (63)

Next, consider the complete graph Kn with n nodes (see Figure B.1, right panel). We have

M(Kn,φ) = (I − φA)−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −φ · · · · · · −φ
−φ 1 −φ −φ
... −φ

. . .
. . .

...
. . .

...
...

... −φ
−φ −φ · · · −φ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

=
1

1− (n− 2)φ− (n− 1)φ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− (n− 2)φ φ · · · · · · φ
φ 1− (n − 2)φ φ φ
... φ

. . .
. . .

...
. . .

...
...

... φ
φ φ · · · φ 1− (n− 2)φ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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With b = M · u we then have that

b(Kn,φ) =
1

1− (n− 1)φ
(1, . . . , 1)⊤ . (64)

The Bonacich matrix of Equation (58) is also a measure of structural similarity of the firms in the
network, called regular equivalence. Leicht et al. [2006] define a similarity score bij , which is high if
nodes i and j have neighbors that themselves have high similarity, given by bij = φ

∑n
k=1 aikbkj+δij . In

matrix-vector notation this reads M = φAM+ I. Rearranging yields M = (I−φA)−1 =
∑∞

k=0 φ
kAk,

assuming that φ < 1/λPF. We hence obtain that the similarity matrix M is equivalent to the Bonacich
matrix from Equation (58). The average similarity of firm i is 1

n

∑n
j=1 bij = 1

nbu,i(G,φ), where
bu,i(G,φ) is the Bonacich centrality of i. It follows that the Bonacich centrality of i is proportional to
the average regular equivalence of i. Firms with a high Bonacich centrality are then the ones which
also have a high average structural similarity with the other firms in the R&D network.

The interpretation of eingenvector-like centrality measures as a similarity index is also important in
the study of correlations between observations in principal component analysis and factor analysis [cf.
Rencher and Christensen, 2012]. Variables with similar factor loadings can be grouped together. This
basic idea has also been used in the economics literature on segregation [e.g. Ballester and Vorsatz,
2013].

There also exists a connection between the Bonacich centrality of a node and its coreness in the
network (see Appendix B.1). The following result, due to Manshadi and Johari [2010], relates the Nash
equilibrium to the k-cores of the graph: If cori = k then bi(G,φ) ≥ 1

1−φk , where the inequality is tight
when i belongs to a disconnected clique of size k+1. The coreness of networks of R&D collaborating
firms has also been studied empirically in Kitsak et al. [2010] and Rosenkopf and Schilling [2007]. In
particular, Kitsak et al. [2010] find that the coreness of a firm correlates with its market value. We
can easily explain this from our model because we know that firms in higher cores tend to have higher
Bonacich centrality, and therefore higher sales and profits (cf. Proposition 1).

C. Herfindahl Index

Denoting by x ≡ M(G,φ)u = bu(G,φ), we can write the Herfindahl index of Equation (68) in the
Nash equilibrium as follows68

H(G) =
u⊤M(G,φ)2u

(u⊤M(G,φ)u)2
=

∥x∥22
∥x∥21

=

∑n
i=1 x

2
i

(
∑n

i=1 |xi|)
2 = γ(x)−1,

which is the inverse of the participation ratio γ(x). The participation ratio γ(x) measures the number
of elements of x which are dominant. We have that 1 ≤ γ(x) ≤ n, where a value of γ(x) = n
corresponds to a fully homogenous case, while γ(x) = 1 corresponds to a fully concentrated case (note
that, if all xi are identical then γ(x) = n, while if one xi is much larger than all others we have
γ(x) = 1). Moreover, γ(x) is scale invariant, that is, γ(αx) = γ(x) for any α ∈ R+. The participation

ratio γ(x) is further related to the coefficient of variation cv(x) = σ(x)
µ(x) , where σ(x) is the standard

deviation and µ(x) the mean of the components of x, via the relationship cv(x)2 = n
γ(x) − 1. This

implies that

H(G) =
u⊤M(G,φ)2u

(u⊤M(G,φ)u)2
=

cv(x)2 + 1

n
∼ cv(x)2

n
.

Hence, the Herfindhal index is maximized for the graph G with the highest coefficient of variation in
the components of the Bonacich centrality bu(G,φ). Finally, as for small values of φ the Bonacich
centrality becomes proportional to the degree, the variance of the Bonacich centrality will be deter-
mined by the variance of the degree. It is known that the graphs that maximize the degree variance
are nested split graphs [cf. Peled et al., 1999].

68See also Equation (72).
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D. Bertrand Competition

In the case of price setting firms we obtain from the profit function in Equation (3) the FOC with
respect to price pi for firm i

∂πi
∂pi

= (pi − ci)
∂qi
∂pi

− qi = 0.

When i ∈ Mm, then observe that from the inverse demand in Equation (1) we find that

qi =
αm(1− ρm)− (1− (nm − 2)ρm)pi + ρm

∑
j∈Mm,j ̸=i pj

(1− ρ)(1 + (nm − 1)ρm)
,

where nm ≡ |Mm|. It then follows that

∂qi
∂pi

= − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

.

Inserting into the FOC with respect to pi gives

qi = − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

(pi − ci).

Inserting Equations (1) and (2) yields

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)
− 1− (nm − 2)ρm

4− (2− ρm)nm − ρm

∑

j∈Mm,j ̸=i

qj

+
(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm
ei +

(1− (nm − 2)ρm)ϕ

ρm(4− (2− ρm)nm − ρm

n∑

j=1

aijej .

The FOC with respect to R&D effort is the same as in the case of perfect competition, so that we get
ei = qi. Inserting equilibrium effort and rearranging terms gives

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1 − (nm − 2)ρm)

− ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1 − (nm − 2)ρm)

∑

j∈Mm,j ̸=i

qj

+
ϕ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1 − (nm − 2)ρm)

n∑

j=1

aijqj.

If we denote by

µi ≡
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

ρ ≡ ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

λ ≡ ϕ(1 − (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
.

Then we can write equilibrium quantities as follows

qi = µi − ρ
n∑

j=1

bijqj + λ
n∑

j=1

aijqj. (65)

Observe that the reduced form Equation (65) is identical to the Cournot case in Equation (38).
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E. Direct and Indirect Technology Spillovers: Theory

We extend our model by allowing for direct (between collaborating firms) and indirect (between non-
collaborating firms) technology spillovers. The profit of firm i ∈ N is still given by πi = (pi−ci)qi− 1

2e
2
i ,

where the inverse demand is pi = ᾱi − qi − ρ
∑n

j=1 bijqj. The main change is in the marginal cost of

production, which is now equal to69

ci = c̄i − ei − ϕ
n∑

j=1

aijej − χ
n∑

j=1

wijej, (66)

where wij are weights characterizing alternative channels for technology spillovers than R&D collabo-
rations (representing for example a patent cross-citation, a flow of workers, or technological proximity
measured by the matrix Pij introduced in Footnote 46). Inserting this marginal cost of production
into the profit function gives

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑

j=1

bijqj + qiei + ϕqi

n∑

j=1

aijej + χqi

n∑

j=1

wijej −
1

2
e2i .

As above, from the first-order condition with respect to R&D effort, we obtain ei = qi. Inserting this
optimal effort into the first-order condition with respect to output, we obtain

qi = ᾱi − c̄i − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj + χ
n∑

j=1

wijqj.

Denoting by µi ≡ ᾱi − c̄i, we can write this as

qi = µi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj + χ
n∑

j=1

wijqj. (67)

If the matrix In + ρB− ϕA− χW is invertible, this gives us the equilibrium quantities

q = (In + ρB− ϕA− χW)−1µ.

Let us now write the econometric equivalent of Equation (67). Proceeding as in Section 7.1, using
Equations (23) and (24) and introducing time t, we get

µit = x⊤
itβ + ηi + κt + ϵit.

Plugging this value of µit into Equation (67), we obtain

qit = ϕ
n∑

j=1

aij,tqjt + χ
n∑

j=1

wij,tqjt − ρ
n∑

j=1

bijqjt + x⊤
itβ + ηi + κt + ϵit.

This is Equation (30) in Section 8.2.

F. Welfare and R&D Network Structure

We will assume in the following that there is only a single market (with M = 1, bij = 0 for i ̸= j and
bii = 1 for all i, j ∈ N ) and make the homogeneity assumption that µi = µ for all i ∈ N . Then, welfare

69See also Eq. (1) in Goyal and Moraga-Gonzalez [2001].
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Figure F.1: (Left panel) The upper and lower bounds of Equation (70) with n = 50, ρ = 0.25 for varying values of ϕ.
(Right panel) The upper and lower bounds of Equation (70) with n = 50, ϕ = 0.015 for varying values of ρ.

can be written as follows

W (G) =
2− ρ

2
∥q∥22 +

ρ

2
∥q∥21,

where ∥q∥p ≡ (
∑n

i=1 q
p
i )

1

p is the Lp-norm of q. Further, note that the Herfindahl-Hirschman industry
concentration index is given by [cf. Hirschman, 1964; Tirole, 1988]70

H =
n∑

i=1

(
qi∑n
j=1 qj

)2

=
∥q∥22
∥q∥21

, (68)

and denoting total output by Q = ∥q∥1, we can write welfare as follows

W (G) =
1

2
∥q∥21

(
(2− ρ)

∥q∥22
∥q∥21

+ ρ

)
=

Q2

2
((2 − ρ)H + ρ) . (69)

One can show that total output Q is largest in the complete graph [cf. Ballester et al., 2006]. However,
as welfare depends on both, output Q and industry concentration H, it is not obvious that the complete
graph (where H = 1/n is small) is also maximizing welfare. As the following proposition illustrates,
we can conclude that the complete graph is welfare maximizing (i.e. efficient) when externalities are
weak, but this may no longer be the case when ρ or ϕ are high.

Proposition 4. Assume that µi = µ for all i = 1, . . . , n, and let ρ, µ, ϕ and φ satisfy the restrictions of
Proposition 1. Denote by Gn the class of graphs with n nodes, Kn ∈ Gn the complete graph, K1,n−1 ∈ Gn the
star network, and let the efficient graph be denoted by G∗ = argmaxG∈Gn W (G).

(i) Welfare of the efficient graph G∗ can be bounded from above and below as follows:

µ2n(2 + (n− 1)ρ)

2(1 + (n− 1)(ρ− ϕ))2
≤ W (G∗) ≤

µ2n
(
(1 − ρ)2(2 + (n− 1)ρ)− n(n− 1)2ρϕ2

)

2((1 + (n− 1)(ρ− ϕ))2 ((1− ρ)2 − (n− 1)2ϕ2)
. (70)

(ii) In the limit of independent markets, when ρ → 0, the complete graph is efficient, Kn = G∗.

(iii) In the limit of weak R&D spillovers, when ϕ → 0, the complete graph is efficient, Kn = G∗.

(iv) There exists a ϕ∗(n, ρ) > 0 (which is decreasing in ρ) such that W (Kn) < W (K1,n−1) for all ϕ > ϕ∗(n, ρ),
and the complete graph is not efficient, Kn ̸= G∗.

Proof of Proposition 4 (ii) Assuming that µi = µ for all i = 1, . . . , n, at the Nash equilibrium,

70For more discussion of the Herfindahl index in the Nash equilibrium see the supplementary Appendix C.

10



and that ρ = 0, we have that q = µM(G,ϕ)u, where we have denoted by M(G,ϕ) ≡ (In−ϕA)−1.71

We then obtain W (G) = q⊤q = µ2u⊤M(G,ϕ)2u. Observe that the quantity u⊤M(G,ϕ)u is the
walk generating function, NG(ϕ), of G that we defined in detail in Appendix B.2. Using the results
of Appendix B.2, we obtain

u⊤M(G,ϕ)2u = u⊤

(
∞∑

k=0

ϕkAk

)2

u

= u⊤

(
∞∑

k=0

k∑

l=0

ϕlAlϕk−lAk−l

)

u

=
∞∑

k=0

(k + 1)ϕku⊤Aku

= NG(ϕ) +
∞∑

k=0

kϕku⊤Aku.

Alternatively, we can write

∞∑

k=0

(k + 1)ϕku⊤Aku =
∞∑

k=0

(k + 1)Nkϕ
k =

d

dϕ
(ϕNG(ϕ)),

so that

u⊤M(G,ϕ)2u =
d

dϕ
(ϕNG(ϕ)) = NG(ϕ) + ϕ

d

dϕ
NG(ϕ).

In the k-regular graph Gk it holds that NG(ϕ) = n
1−kϕ and d

dϕ(ϕNG(ϕ)) = NG(ϕ) + ϕ d
dϕ =

NG(ϕ) = n
1−kϕ + nkϕ

(1−kϕ)2 = n
1−kϕ

(
1 + kϕ

1−kϕ

)
= n

(1−kϕ)2 . Using the fact that the number of links

in a k-regular graph is given by m = nk
2 we obtain a lower bound on welfare in the efficient

graph given by µ2n
(1− 2m

n
ϕ)2

≤ W (G∗). This lower bound is highest for the complete graph Kn where

m = n(n− 1)/2, so that72

µ2n

(1− (n− 1)ϕ)2
≤ W (G∗).

In order to derive an upper bound, observe that

u⊤Aku =
n∑

i=1

(u⊤vi)
2λk

i ,

NG(ϕ) =
n∑

i=1

(v⊤
i u)

2

1− λiϕ
,

71Note that there exists a relationship between the matrix M(G,ϕ) with elements mij(G,ϕ) and the length

of the shortest path ℓij(G) between nodes i and j in the network G. Namely ℓij(G) = limϕ→0
∂ lnmij(G,ϕ)

∂ lnϕ
=

limϕ→0
ϕ

mij(G,ϕ)

∂mij (G,ϕ)

∂ϕ
. See also Newman [2010, Chap. 6]. This means that the length of the shortest path be-

tween i and j is given by the relative percentage change in the weighted number of walks between nodes i and j in G
with respect to a relative percentage change in ϕ in the limit of ϕ → 0.

72 Using Rayleigh’s inequality, one can show that d
dϕ

(ϕNG(ϕ)) ≥ 1
λ1

d
dϕ

[Van Mieghem, 2011, p. 51]. From this we can

obtain a lower bound on welfare given by W (G) ≥ µ2 1
λ1

d
dϕ

(NG(ϕ)).
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so that we can write

u⊤M(G,ϕ)2u =
n∑

i=1

(v⊤
i u)

2

1− λiϕ
+

n∑

i=1

(u⊤vi)
2

∞∑

k=0

kϕkλk
i

=
n∑

i=1

(v⊤
i u)

2

1− λiϕ
+

n∑

i=1

(u⊤vi)2ϕλi

(1− ϕλi)2

=
n∑

i=1

(u⊤vi)2

1− ϕλi

(
1 +

ϕλi

1− ϕλi

)

=
n∑

i=1

(u⊤vi)2

(1− ϕλi)2
.

From the above it follows that welfare can also be written as

W (G) = µ2 d

dϕ
(ϕNG(ϕ)) = µ2

n∑

i=1

(u⊤vi)2

(1− ϕλi)2
.

This expression shows that gross welfare is highest in the graph where λ1 approaches 1/ϕ. We then
can upper bound welfare as follows73

W (G) = µ2
n∑

i=1

(u⊤vi)2

(1− ϕλi)2
≤ µ2

∑n
i=1(u

⊤vi)2

(1− ϕλ1)2
≤ µ2 n

(1− ϕλ1)2
,

where we have used the fact that NG(0) =
∑n

i=1(u
⊤vi)2 = n so that (u⊤v1)2 < n. Note that

the largest eigenvalue λ1 is upper bounded by the largest eigenvalue of the complete graph Kn,
where it is equal to n− 1. In this case, upper and lower bounds coincide, and the efficient graph is
therefore complete, that is Kn = argmaxG∈Gn W (G).

(i) Welfare can be written as

W (G) =
2− ρ

2

µ2

ρ2
u⊤M(G,φ)2u+ ρ

2−ρ(u
⊤M(G,φ)u)2

(
1−ρ
ρ + u⊤M(G,φ)u

)2 .

For the k-regular graph Gk we have that

u⊤M(G,φ)u =
n

1− (k − 1)φ
,

u⊤M(G,φ)2u =
n

(1 − (k − 1)φ)2
,

and welfare is given by

W (Gk) =
µ2n((n− 1)ρ+ 2)

2(ρ(kφ + n− 1)− kφ+ 1)2
.

As k = 2m/n this is

W (Gk) =
µ2n3((n − 1)ρ+ 2)

2(2m(ρ − 1)φ+ (n− 1)nρ+ n)2
.

Together with the definition of the average degree d̄ = 2m
n this gives us the lower bound on welfare

73An alternative proof uses the fact that λ1 ≥
(

Nk(G)
n

) 1

k
[cf. Van Mieghem, 2011, p. 47], so that d

dϕ
(ϕNG(ϕ)) =

∑∞
k=0 ϕ

k(k+ 1)Nk(ϕ) ≤ n
∑∞

k=0(λ1ϕ)k(k +1) = n
∑∞

k=0(λ1ϕ)k + n
∑∞

k=0 k(λ1ϕ)k = n
(

1
1+ϕλ1

+ ϕλ1

(1+ϕλ1)2

)
= n

(1+ϕλ1)2
.
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for all graphs with m links. For the complete graph Kn we get

u⊤M(G,φ)u =
n

1− (n− 1)φ
,

u⊤M(G,φ)2u =
n

(1− (n− 1)φ)2
,

so that we obtain for welfare in the complete graph

W (Kn) =
µ2n(2 + (n− 1)ρ)

2((n − 1)ρ(φ + 1)− (n − 1)φ + 1)2
.

Using the fact that φ = ϕ
1−ρ we can write this as follows

W (Kn) =
µ2n(2 + (n− 1)ρ)

2((n − 1)ρ− (n− 1)ϕ + 1)2
.

This gives us the lower bound on welfare W (Kn) ≤ W (G∗). To obtain an upper bound, note that
welfare can be written as

W (G) =
µ2

2ρ2

(2− ρ) u⊤M(G,φ)2u
(u⊤M(G,φ)u)2

+ ρ
(

1−ρ
ρ

+u⊤M(G,φ)u
)2

(u⊤M(G,φ)u)2

.

Next, observe that

(
1−ρ
ρ + u⊤M(G,φ)u

)2

(u⊤M(G,φ)u)2
=

(
1 +

1− ρ

ρ

1

u⊤M(G,φ)u

)2

≥
(
1 +

1− ρ

ρ

1− λ1φ

n

)2

,

where we have used the fact that u⊤M(G,φ)u = NG(φ) ≤ n
1−λ1φ

. This implies that

W (G) ≤ µ2

2ρ2

(2− ρ) u⊤M(G,φ)2u
(u⊤M(G,φ)u)2

+ ρ
(
1 + 1−ρ

ρ
1−λ1φ

n

)2 (71)

Next, observe that the Herfindahl industry concentration index is defined as H =
∑n

i=1 s
2
i , where

the market share of firm i is given by si =
qi

∑n
j=1 qj

[cf. e.g. Tirole, 1988]. Using our equilibrium

characterization from Equation (10) we can write

H(G) =
n∑

i=1

(
qi∑n
j=1 qj

)2

=

∑n
i=1 bi (G,φ)2

(∑n
j=1 bj (G,φ)

)2 =
b (G,φ)⊤ b (G,φ)

(u⊤b (G,φ))2
=

u⊤M(G,φ)2u

(u⊤M(G,φ)u)2
. (72)

The upper bound for welfare can then be written more compactly as follows

W (G) ≤ µ2

2ρ2
(2− ρ)H(G) + ρ
(
1 + 1−ρ

ρ
1−λ1φ

n

)2 . (73)

Further, we have that

H(G) =
u⊤M2(G,φ)u

(u⊤M(G,φ)u)2
=

d
dφ (φNG(φ))

NG(φ)2
=

∑n
i=1

(u⊤vi)2

(1−φλi)2(∑n
i=1

(u⊤vi)2

1−φλi

)2 ≤
1

1−φλ1

∑n
i=1

(u⊤vi)2

1−φλi(∑n
i=1

(u⊤vi)2

1−φλi

)2

=
1

(1− φλ1)NG(φ)
≤ 1

(1− φλ1)(n + 2mφ)
≤ 1

(1− φ
√

2m(n−1)
n )(n + 2mφ)

,
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Figure F.2: The RHS in Equation (74) with varying values of m ∈ {0, 1, . . . , n(n− 1)/2} for n = 100, ϕ = 0.9(1 − ρ)/n
and ρ ∈ {0.05, 0.1, 0.25, 0.5, 0.99}.

where we have used the fact that NG(φ) ≥ n + 2mφ for φ ∈ [0, 1/λ1), and the upper bound

λ1 ≤
√

2m(n−1)
n [cf. Van Mieghem, 2011, p. 52]. Inserting into the upper bound in Equation (71)

and substituting φ = (1− ρ)/ϕ gives

W (G∗) ≤ µ2n2

2

ρ+ (2− ρ) (1−ρ)2

(n(1−ρ)+2mϕ)

(

1−ρ−ϕ
√

2m(n−1)
n

)

(
1 + (n− 1)ρ− ϕ

√
2m(n−1)

n

)2 . (74)

The RHS in Equation (74) is increasing in m (see Figure F.2) and attains its maximum at m =
n(n− 1)/2, where we get

W (G∗) ≤
µ2n

(
(ρ− 1)2((n− 1)ρ+ 2)− (n− 1)2nρϕ2

)

2((n − 1)ρ− nϕ+ ϕ+ 1)2 ((ρ− 1)2 − (n− 1)2ϕ2)
.

(iii) Assuming that µi = µ for all i = 1, . . . , n, we have that

q =
µ

1 + ρ(u⊤M(G,φ)u − 1)
M(G,φ)u,

with M(G,φ) ≡ (In − φA)−1, and we can write

W (G) =
µ2

2(1 + ρ(u⊤M(G,φ)u − 1))2

(
(2− ρ)u⊤M(G,φ)2u+ ρ(u⊤M(G,φ)u)2

)
.

Using the fact that u⊤M(G,φ)u = NG(φ) and u⊤M(G,φ)2u = d
dφ (φNG(φ)), we then can write

welfare in terms of the walk generating function NG(φ) as

W (G) =
µ2

2(1 + ρ(NG(φ)− 1))2

(
(2− ρ)

d

dφ
(φNG(φ)) + ρNG(φ)

2

)
.

Next, observe that
NG(φ) = N0 +N1φ+N2φ

2 +O(φ3),

and consequently
d

dφ
(φNG(φ)) = N0 + 2N1φ+ 3N2φ

2 +O(φ3).
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Inserting into welfare gives

W (G) =
µ2N0((N0 − 1)ρ+ 2)

2((N0 − 1)ρ+ 1)2
− µ2N1(ρ− 1)((N0 − 1)ρ+ 2)

((N0 − 1)ρ+ 1)3
φ+O(φ)2.

Using the fact that N0 = n and N1 = 2m we get

W (G) =
µ2n((n− 1)ρ+ 2)

2((n − 1)ρ+ 1)2
+

2µ2m(1− ρ)(2 + (n− 1)ρ)

(1 + (n− 1)ρ)3
φ+O(φ)2.

Up to terms linear in φ this is an increasing function of m, and hence is largest in the complete
graph Kn.

(iv) Welfare can be written as

W (G) =
µ2
(
(u⊤M(G,φ)u)2ρ+ u⊤M(G,φ)2u(2− ρ)

)

2((u⊤M(G,φ)u − 1)ρ+ 1)2
.

For the complete graph we obtain

u⊤M(Kn,φ)u =
n

1− (n− 1)φ
,

u⊤M(Kn,φ)
2u =

n

(1− (n− 1)φ)2
.

With φ = ϕ
1−ρ welfare in the complete graph is given by

W (Kn) =
µ2n((n− 1)ρ+ 2)

2((n − 1)ρ− nϕ+ ϕ+ 1)2
,

For the star K1,n−1

u⊤M(K1,n−1,φ)u =
2(n − 1)φ+ n

1− (n− 1)φ2
,

u⊤M(K1,n−1,φ)
2u =

(n − 1)nφ2 + 4(n− 1)φ+ n

((n− 1)φ2 − 1)2
.

Inserting φ = ϕ
1−ρ , welfare in the star is then given by

W (K1,n−1) =
µ2
(
(n− 1)ϕ2(n(3ρ+ 2)− 4ρ)− 4(n− 1)(ρ− 1)ϕ((n − 1)ρ+ 2) + n(ρ− 1)2((n − 1)ρ+ 2)

)

2 (−2(n− 1)ρϕ+ (ρ− 1)((n − 1)ρ+ 1) + (n− 1)ϕ2)2
.

(75)
Welfare of the star K1,n−1 for varying values of ρ can be seen in Figure F.3, right panel. For the
ratio of welfare in the complete graph and the star we then obtain

W (Kn)

W (K1,n−1)
= n(2 + (n− 1)ρ)

(
2(n− 1)ρϕ + (1− ρ)((n− 1)ρ+ 1)− (n− 1)ϕ2

)2

×
(
(1 + (n − 1)ρ− (n− 1)ϕ)2

(
(n− 1)ϕ2(n(3ρ+ 2)− 4ρ)

+4(n− 1)(1 − ρ)ϕ((n − 1)ρ+ 2) + n(1− ρ)2((n − 1)ρ+ 2)
))−1

.
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Figure F.3: (Left panel). The ratio of welfare in the complete graph, Kn, and the star, K1,n−1, for n = 10, ρ = 0.981
and varying values of ϕ (< ((1− ρ)/λPF(Kn) = 0.002) (Right panel) Welfare in the star, K1,n−1, with varying values of
ρ for n = 10 and ϕ = 0.001 (< (1− ρ)/λPF(K1,n−1) for all values of ρ considered).

This ratio equals one when ϕ = ϕ∗(n, ρ), which is given by

ϕ∗(n, ρ) =
1

6A(n− 1)((n − 1)ρ+ n)

×
(

3
√
2A2 + 2A(n − 1)(2 − ρ(3(n − 1)ρ+ 5)) + 22/3(n− 1)

)

×
(
6n2 − (n− 1)(15(n − 2)n + 8)ρ2 + (n(3(n − 16)n + 76)− 16)ρ − 32n+ 8

)
,

where we have denoted by

A =
(
−3(n− 1)2

(
n
(
3n
(
6n2 − 33n+ 86

)
− 248

)
+ 32

)

×ρ2 − 27(n − 2)(n − 1)4nρ4 + (n− 1)3(9(n − 2)n(3n − 19)− 32)ρ3

+3
√
3B − 12n(n(5n(3(n − 5)n + 31)− 153) + 66)ρ− 16n(n(n(9n − 29) + 33)− 15) + 96ρ− 32

) 1
3
,

and

B =
(
(n− 2)(n − 1)3n((n− 1)ρ+ n)2

×
(
27(n − 2)(n − 1)3nρ6 − 2(n − 1)2(9(n − 2)n(6n − 19)− 32)ρ5

+(n− 1)(n(n(2n(37n − 526) + 3283) − 3046) + 384)ρ4 + 2(n(n(n(n(n+ 242) − 1936) + 4384) − 3264) + 448)ρ3

+4((n− 2)n(n(3n + 302) − 786) − 256)ρ2 + 24(n − 2)(n(n + 56) − 12)ρ+ 16(n(n + 34) − 8)
)) 1

2 .

We then have that W (Kn) > W (K1,n−1) if ϕ < ϕ∗(n, ρ) and W (Kn) < W (K1,n−1) otherwise. An
illustration can be seen in Figure F.3, left panel.

The upper and lower bounds of case (i) in Proposition 4 on welfare can be seen in Figure F.1.
The bounds indicate that welfare is typically increasing in strength of technology spillovers, ϕ, and
decreasing in the degree of competition, ρ, at least when these are not too high. The figure is also
consistent with cases (ii) and (iii), where it is shown that for weak spillovers the complete graph is
efficient. However, Proposition 4, case (iv), shows that in the presence of stronger externalities through
R&D spillovers and competition, the star network generates higher welfare than the complete network.
This happens when the welfare gains through concentration, which enter the welfare function through
the Herfindahl index H in Equation (69), dominate the welfare gains through maximizing total output
Q.

While total output Q (and total R&D) is increasing with the degree of competition, measured by
ρ (Schumpeterian effect ; see e.g. Aghion et al. [2014]), this may not necessarily hold for welfare. This
is illustrated in the right panel in Figure F.3 where welfare for the star is shown for varying values of
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ρ. The presence of externalities through R&D spillovers and business stealing effects through market
competition in highly centralized networks can thus give rise to a non-monotonic relationship between
competition and welfare [cf. Aghion et al., 2005]. The centralization of the network structure, however,
seems to be important for this result, as for example in a regular graph (such as the complete graph)
welfare is decreasing monotonically with increasing ρ.74

G. Data

In the following appendices we give a detailed account on how we constructed our data sample. In
Appendix G.1 we describe the two raw datasources we have used to obtain information on R&D
collaborations between firms. In Appendix G.2 we explain how we complemented these data with
information about mergers and acquisitions, while Appendix G.3 explains how we supplemented the
alliance information with firms’ balance sheet statements. Moreover, Appendix G.4 discusses the
geographic distribution of the firms in our data sample. Finally, Appendix G.5 provides the details
on how we complemented the alliance data with the firms patent portfolios and computed their
technological proximities.

G.1. R&D Network

To get a comprehensive picture of alliances we use data on interfirm R&D collaborations stemming
from two sources which have been widely used in the literature [cf. Schilling, 2009]. The first is
the Cooperative Agreements and Technology Indicators (CATI) database [cf. Hagedoorn, 2002]. The
database only records agreements for which a combined innovative activity or an exchange of tech-
nology is at least part of the agreement. Moreover, only agreements that have at least two industrial
partners are included in the database, thus agreements involving only universities or government labs,
or one company with a university or lab, are disregarded. The second is the Thomson Securities
Data Company (SDC) alliance database. SDC collects data from the U. S. Securities and Exchange
Commission (SEC) filings (and their international counterparts), trade publications, wires, and news
sources. We include only alliances from SDC which are classified explicitly as research and develop-
ment collaborations. A comparative analysis of these two databases (and other alternative databases)
can be found in Schilling [2009].

We then merged the CATI database with the Thomson SDC alliance database. For the matching of
firms across datasets we adopted the name matching algorithm developed as part of the NBER patent
data project [Trajtenberg et al., 2009] and developed further by Atalay et al. [2011].75 From the firms
in the CATI database and the firms in the SDC database we could match 21% of the firms appearing
in both databases. Considering only firms without missing observations on sales, output and R&D
expenditures (see also Appendix G.3 below on how we obtained balance sheet and income statement
information), gives us a sample of 1, 186 firms and a total of 1010 collaborations over the years 1967 to
2006.76 The average degree of the firms in this sample is 1.68 with a standard deviation of 4.83 and the
maximum degree is 63 attained by Motorola Inc.. Figure G.1 shows the largest connected component
of the R&D collaboration network with all links accumulated up to the year 2005 (see Appendix B.1).
The figure indicates two clusters appearing which are related to the different industries in which firms
are operating. This may indicate specialization in R&D alliance partnerships.

Figure G.2 shows the average clustering coefficient, C, the relative size of the largest connected
component, max{H⊆G} |H |/n, the average path length, ℓ, and the eigenvector centralization Cv (relative
to a star network of the same size) over the years 1990 to 2005 (see Wasserman and Faust [1994] and
Appendix B.1 for the definitions). We observe that the network shows the highest degree of clustering

74Decreasing welfare with increasing competition is a feature not only of the standard Cournot model (without exter-
nalities) but also of many traditional models in the literature including Aghion and Howitt [1992], and Grossman and
Helpman [1991].

75See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and Ali Hortacsu
for sharing their name matching algorithm with us.

76This is the sample that we have used for our empirical analysis in Section 7.
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Figure G.1: The largest connected component of the R&D collaboration network with all links accumulated until the
year 2005. The nodes’ colors indicate sectors according to 4-digit SIC codes while the nodes’ sizes indicate the number
of collaborations of a firm.
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Figure G.2: The average clustering coefficient, C, the relative size of the largest connected component, max{H⊆G} |H |/n,
the average path length, ℓ, and the eigenvector centralization Cv (relative to a star network of the same size) over the
years 1990 to 2005 (see Appendix B.1). Dashed lines indicate the corresponding quantities for the original network
(where firms have not been dropped because of missing accounting information), while solid lines indicate the subsample
with 1, 186 firms that we have used in the empirical Section 7.

in the year 1990 and the largest connected component around the year 1997, an average path length of
around 5, and a centralization index Cv between 0.3 and 0.7. Moreover, comparing our subsample and
the original network (where firms have not been dropped because of missing accounting information)
we find that both exhibit similar trends over time. This seems to suggest that the patterns found in
the subsample are representative for the overall patterns in the data (see also Section 8.4). Further,
the clustering coefficient and the size of the largest connected component exhibit a similar trend as
the number of firms and the average number of collaborations that we have seen already in Figure 2.

Figure G.3 shows the degree distribution, P (d), the average nearest neighbor connectivity, knn(d),
the clustering degree distribution, C(d), and the component size distribution, P (s) across different
years of observation [cf. e.g. König, 2011]. The degree distribution decays as a power law, the average
nearest neighbor degree is weakly increasing with the degree, indicating a weakly assortative network,
the clustering degree distribution is decreasing with the degree and the component size distribution
indicates a large connected component (see also Figure G.1) with smaller components decaying as a
power law.

Figure G.4 and Tables 13 and 14 illustrate the industrial composition of our sample of R&D collab-
orating firms at the main 2-digit and 4-digit standard industry classification (SIC) levels, respectively.
At the 2-digit level, the chemicals and allied products sectors make up for the largest fraction (22.43%)
of firms in our data, followed by business services and electronic equipment. This sectoral composition
is similar to the one provided in Schilling [2009], who identifies the biotech and information technology
sectors as the most prominent in the CATI and SDC R&D collaboration databases.
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Figure G.3: The degree distribution, P (d), the average nearest neighbor connectivity, knn(d), the clustering degree
distribution, C(d), and the component size distribution, P (s).
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Figure G.4: The shares of the ten largest sectors at the 2-digit (left panel) and 4-digit (right panel) SIC levels. See also
Tables 13 and 14, respectively.
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Table 13: The 20 largest sectors at the 2-digit SIC level.

Sector 2-dig SIC # firms % of tot. Rank

Chemical and Allied Products 28 266 22.43 1
Business Services 73 198 16.69 2
Electronic and Other Electric Equipment 36 187 15.77 3
Instruments and Related Products 38 154 12.98 4
Industrial Machinery and Equipment 35 150 12.65 5
Transportation Equipment 37 47 3.96 6
Engineering and Management Services 87 25 2.11 7
Primary Metal Industries 33 18 1.52 8
Fabricated Metal Products 34 15 1.26 9
Oil and Gas Extraction 13 14 1.18 10
Communications 48 14 1.18 11
Rubber and Miscellaneous Plastics Products 30 10 0.84 12
Paper and Allied Products 26 9 0.76 13
Petroleum and Coal Products 29 9 0.76 14
Health Services 80 9 0.76 15
Food and Kindred Products 20 8 0.67 16
Miscellaneous Manufacturing Industries 39 7 0.59 17
Electric Gas and Sanitary Services 49 6 0.51 18
Textile Mill Products 22 5 0.42 19
Stone Clay and Glass Products 32 5 0.42 20

Table 14: The 20 largest sectors at the 4-digit SIC level.

Sector 4-dig SIC # firms % of tot. Rank

Services-Prepackaged Software 7372 163 13.74 1
Pharmaceutical Preparations 2834 129 10.88 2
Semiconductors and Related Devices 3674 79 6.66 3
Biological Products (No Diagnostic Substances) 2836 74 6.24 4
Telephone and Telegraph Apparatus 3661 39 3.29 5
Electromedical and Electrotherapeutic Apparatus 3845 28 2.36 6
Electronic Computers 3571 26 2.19 7
In Vitro and In Vivo Diagnostic Substances 2835 24 2.02 8
Computer Peripheral Equipment NEC 3577 22 1.85 9
Surgical and Medical Instruments and Apparatus 3841 22 1.85 10
Special Industry Machinery NEC 3559 21 1.77 11
Laboratory Analytical Instruments 3826 20 1.69 12
Services-Computer Integrated Systems Design 7373 20 1.69 13
Radio and TV Broadcasting and Communications Equipment 3663 18 1.52 14
Motor Vehicle Parts and Accessories 3714 18 1.52 15
Instruments For Meas and Testing of Electricity and Elec Signals 3825 17 1.43 16
Computer Storage Devices 3572 15 1.26 17
Computer Communications Equipment 3576 14 1.18 18
Search Detection Navigation Guidance Aeronautical Sys 3812 14 1.18 19
Services-Commercial Physical and Biological Research 8731 14 1.18 20
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G.2. Mergers and Acquisitions

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over time, and
this will impact the R&D collaboration network [cf. Hanaki et al., 2010].

To get a comprehensive picture of the M&A activities of the firms in our dataset, we use two
extensive datasources to obtain information about M&As. The first is the Thomson Reuters’ Securities
Data Company (SDC) M&A database, which has historically been the most widely used database for
empirical research in the field of M&As. Data in SDC dates back to 1965 with a slightly more complete
coverage of deals starting in the early 1980s. The second database with information about M&As is
Bureau van Dijk’s (BvD) Zephyr database, which is a recent alternative to the SDC M&As database.
The history of deals recorded in Zephyr goes back to 1997. In 1997 and 1998 only European deals
are recorded, while international deals are included starting from 1999. According to Huyghebaert
and Luypaert [2010], Zephyr “covers deals of smaller value and has a better coverage of European
transactions”. A comparison and more detailed discussion of the two databases can be found in
Bollaert and Delanghe [2015] and Bena et al. [2008].

We merged the SDC and Zephyr databases (with the above mentioned name matching algorithm;
see also Atalay et al. [2011]; Trajtenberg et al. [2009]) to obtain information on M&As of 116, 641 unique
firms. Using the same name matching algorithm we could identify 43.08% of the firms in the combined
CATI-SDC alliance database that also appear in the combined SDC-Zephyr M&As database. We
then account for the M&A activities of these matched firms when constructing the R&D collaboration
network by assuming that an acquiring firm in a M&A inherits all the R&D collaborations of the
target firm, and we remove the target firm form from the network.

G.3. Balance Sheet Statements

The combined CATI-SDC alliance database provides the names for each firm in an alliance, but it
does not contain information about the firms’ output levels or R&D expenses. We therefore matched
the firms’ names in the combined CATI-SDC database with the firms’ names in Standard & Poor’s
Compustat U.S. fundamentals annual database and Bureau van Dijk (BvD)’s Osiris database, to
obtain information about their balance sheets and income statements.77 These databases contain only
firms listed on the stock market, so they typically exclude smaller private firms, but this is inevitable
if one is going to use market value data. Nevertheless, R&D is concentrated in publicly listed firms,
and our data sources thus cover most of the R&D activities in the economy [cf. e.g. Bloom et al.,
2013]. Compustat contains financial data extracted from company filings.

Compustat North America is a database of U.S. and Canadian fundamental and market information
on active and inactive publicly held companies. It provides more than 300 annual and 100 quarterly
income statements, balance sheets and statement of cash flows. The Compustat database covers 99%
of the total market capitalization with annual company data history available back to 1950.

Osiris is owned by Bureau van Dijk (BvD) and it contains a wide range of accounting and other
items for firms from over 120 countries. Osiris contains financial information on globally listed public
companies with coverage for up to 20 years on over 62, 191 companies by major international industry
classifications. It claims to cover all publicly listed companies worldwide. In addition, it covers major
non-listed companies when they are primary subsidiaries of publicly listed companies, or in certain
cases, when clients request information from a particular company.

For a detailed comparison and discussion of the Compustat and Osiris databases see Dai [2012]
and Papadopoulos [2012].

For the matching of firms across datasets we adopted the name matching algorithm developed
as part of the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009]. We could
match 25.53% of the firms in the combined CATI-SDC database with the combined Compustat-Osiris

77We chose to use two alternative database for firm level accounting data to get as much information as possible about
balance sheets and income statements for the firms in the R&D collaboration database. The accounting databases used
here are complementary, as Compustat features a greater coverage of large companies, while BvD Osiris contains a higher
number of small firms and tends to have a better coverage of European firms [cf. Dai, 2012].
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Figure G.5: The sales distribution, P (s), the output distribution, P (q), the R&D expenditures distribution, P (e), and
the patent stock distribution, P (k), across different years ranging from 1990 to 2005 using a logarithmic binning of the
data [McManus et al., 1987].

database (where accounting information was available). For the matched firms we obtained their
sales and R&D expenditures. We adjusted for inflation using the consumer price index of the Bureau
of Labor Statistics (BLS), averaged annually, with 1983 as the base year. Individual firms’ output
levels are computed from deflated sales using 2-SIC digit industry-year specific price deflators from
the OECD-STAN database [cf. Gal, 2013]. We then dropped all firms with missing information on
sales, output and R&D expenditures. This pruning procedure left us with a subsample of 1, 186, on
which the empirical analysis in Section 7 is based.78

The empirical distributions for sales, P (s), output, P (q), R&D expenditures, P (e), and the patent
stocks, P (k), across different years ranging from 1990 to 2005 (using a logarithmic binning of the data
with 100 bins [cf. McManus et al., 1987]) are shown in Figure G.5. All distributions are highly skewed,
indicating a large degree of inequality in firms’ sizes and patent activities.

G.4. Geographic Location and Distance

In order to determine the locations of the firms in our data we have added the longitude and latitude
coordinates associated with the city of residence of each firm in our data. Among the matched cities
in our dataset 93.67% could be geo-localized using ArcGIS [cf. e.g. Dell, 2009] and the Google Maps
Geocoding API.79 We then used Vincenty’s algorithm to compute the distances between pairs of geo-
localized firms [cf. Vincenty, 1975]. The mean distance, d, and the distance distribution, P (d), across
collaborating firms are shown in Figure H.1, while Figure G.6 shows the locations (at the city level) of
firms in the database and the collaborations between them. The largest distance between collaborating
firms appears around the turn of the millennium, while the distance distribution is heavily skewed.
We find that R&D collaborations tend to be more likely between firms that are close, showing that

78Section 8.4 discusses how sensitive our empirical results are with respect to subsampling (i.e. missing data).
79See https://developers.google.com/maps/documentation/geocoding/intro.
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Figure G.6: The locations (at the city level) of firms and their R&D alliances in the combined CATI-SDC databases.

geography matters for R&D collaborations and spillovers, in line with previous empirical studies [cf.
Lychagin et al., 2010].

G.5. Patents

We identified the patent portfolios of the firms in our dataset using the EPO Worldwide Patent
Statistical Database (PATSTAT) [Hall et al., 2001; Jaffe and Trajtenberg, 2002]. The creation of this
worldwide statistical patent database was initiated by the OECD task force on patent statistics. It
includes bibliographic details on patents filed to 80 patent offices worldwide, covering more than 60
million documents. Hence filings in all major countries and at the World International Patent Office
are covered. We matched the firms in our data with the assignees in the PATSTAT database using
the above mentioned name matching algorithm [Atalay et al., 2011; Trajtenberg et al., 2009]. We
only consider granted patents (or successful patents), as opposed to patents applied for, as they are
the main drivers of revenue derived from R&D expenditures [cf. Copeland and Fixler, 2012]. Using
our name matching algorithm we obtained matches for 36.05% of the firms in our data with patent
information. The distribution of the number of patents is shown in Figure G.5. The technology classes
were identified using the main international patent classification (IPC) numbers at the 4-digit level.

From the firms’ patents, we then computed the technological proximity of firm i and j as

fJ
ij =

P⊤
i Pj

√
P⊤

i Pi

√
P⊤

j Pj

, (76)

where, for each firm i, Pi is a vector whose k-th component, Pik, counts the number of patents firm
i has in technology category k divided by the total number of technologies attributed to the firm
[cf. Bloom et al., 2013; Jaffe, 1989]. Thus, Pi represents the patent portfolio of firm i. We use the
three-digit U.S. patent classification system to identify technology categories [Hall et al., 2001]. We
denote by FJ the (n× n) matrix with elements (fJ

ij)1≤i,j≤n.
We next consider the Mahalanobis technology proximity measure introduced by Bloom et al. [2013].

To construct this metric, we need to introduce some additional notation. Let N be the number of
technology classes, n the number of firms, and let T be the (N×n) patent shares matrix with elements

Tji =
1∑n

k=1 Pki
Pji,
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for all 1 ≤ i ≤ n and 1 ≤ j ≤ N . Further, we construct the (N × n) normalized patent shares matrix T̃

with elements
T̃ji =

1√∑N
k=1 T

2
ki

Tji,

and the (n×N) normalized patent shares matrix across firms is defined by x̃ with elements

X̃ik =
1√∑N
i=1 T

2
ki

Tki.

Let Ω = x̃⊤x̃. Then the (n×n) Mahalanobis technology similarity matrix with elements (fM
ij )1≤i,j≤n is

defined as
FM = T̃⊤ΩT̃. (77)

Figure H.2 shows the average patent proximity across collaborating firms using the Jaffe metric fJ
ij of

Equation (76) or the Mahalanobis metric fM
ij of Equation (77). Both are monotonic increasing over

almost all years of observations. This suggests that R&D collaborating firms tend to become more
similar over time.

H. Numerical Algorithm for Computing Optimal Subsidies

The bounded linear complementarity problem (LCP) of Equation (50) is equivalent to the Kuhn-Tucker
optimality conditions of the following quadratic programming (QP) problem with box constraints [cf.
Byong-Hun, 1983]

min
q∈[0,q̄]n

{
−ν(s)⊤q+

1

2
q⊤ (In + ρB− ϕA)q

}
, (78)

where ν(s) ≡ µ+ (In + ϕA)s. Moreover, net welfare is given by

W (G, s) =
n∑

i=1

(
q2i
2

+ πi − siei

)
= µ⊤q− q⊤

(ρ
2
B− ϕA

)
q+ ϕq⊤As− 1

2
s⊤As.

Finding the optimal subsidy program s∗ ∈ [0, s̄]n is then equivalent to solving the following bilevel

optimization problem [cf. Bard, 2013]

max
s∈[0,s̄]n

W (G, s) = µ⊤q∗(s)− q∗(s)⊤
(ρ
2
B− ϕA

)
q∗(s) + ϕq∗(s)⊤As− 1

2
s⊤As

s.t. q∗(s) = min
q∈[0,q̄]n

{
−ν(s)⊤q+

1

2
q⊤ (In + ρB− ϕA)q

}
.

(79)

The bilevel optimization problem of Equation (79) can be implemented in MATLAB following a two-stage
procedure. First, one computes the Nash equilibrium output levels q∗(s) as a function of the subsidies
s by solving a quadratic programming problem, for example using the MATLAB function quadprog, or
the nonconvex quadratic programming problem solver with box constraints QuadProgBB introduced in
Chen and Burer [2012].80 Second, one can apply an optimization routine to this function calculating
the subsidies which maximize net welfare W (G, s), for example using MATLAB’s function fminsearch

(which uses a Nelder-Mead algorithm).
This bilevel optimization problem can be formulated more efficiently as a mathematical programming

problem with equilibrium constraints (MPEC; see also Luo et al. [1996]). While in the above procedure
the quadprog algorithm solves the quadratic problem with high accuracy for each iteration of the
fminsearch routine, MPEC circumvents this problem by treating the equilibrium conditions as con-

80However, in the data that we have analyzed in this paper the quadratic programming subproblem of determining
the Nash equilibrium outptut levels always turned out to be convex, and therefore we always obtained a unique Nash
equilibrium.
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Figure H.1: The mean distance, d, and the distance distribution, P (d), across collaborating firms in the combined
CATI-SDC database.
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Figure H.2: The mean patent proximity across collaborating firms using the Jaffe metric fJ
ij of Equation (76) or the
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straints. This method has recently been proposed to structural estimation problems following the
seminal paper by Su and Judd [2012]. The MPEC approach can be implemented in MATLAB using a
constrained optimization solver such as fmincon.81

Finally, to initialize the optimiziation algorithm we can use the theoretical optimal subsidies from
Propositions 2 and 3, by setting the output levels of the firms which would produce at negative quan-
tities under these policies to zero (if there are any), and then apply a bounded quadratic programming
algorithm to determine the Nash equilibrium quantities under these subsidy policies.
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