Global and regional stock market spillovers during the COVID-19 pandemic context: an Asian perspective

Benjamin Keddad^a, Takashi Matsuki^b and Kimiko Sugimoto^c (alphabetic order)

^aParis School of Business ^bRyukoku University ^cKonan University

French/Japanese Webinar in Economics (FJWE)

Motivation

Goal of the paper:

- $\rightarrow~{\rm Quantifying}$ the investors' reaction to the pandemic in Asia
- $\rightarrow\,$ Stock markets spillovers and COVID variables

Effect of the COVID-19:

- $\rightarrow\,$ Restrictive and isolation policies
- $\rightarrow~{\rm Concerns}$ about the economic outlook
- $\rightarrow~{\rm Freezing}$ of most economic activities
- $\rightarrow\,$ Investor panic and increase of volatility across all financial markets

Motivation

The COVID-19 pandemic has wreaked havoc on the global equities, commodities, and cryptocurrency markets.

Some examples:

- $\rightarrow\,$ March 9, 2020, the S&P dropped by 7% in just four minutes.
- $\rightarrow\,$ March 12, European stock markets fell 11%, the worst decline observed during a single day in history
- \to The yield on 10 and 30-year US Treasury Securities experienced record falls, with the 30-year options settling below 1% for the first time in their history

Significant increase in cross-markets co-movements is expected due to greater cross-regional financial connections between countries or regions.

Literature Review

Empirical and theoretical literature on international transmission of financial shocks is important:

- $\rightarrow\,$ Common economic factors (Giglio et al., 2016)
- \rightarrow Overlapping claims between financial institutions of different countries/regions (Allen and Gale, 2000)
- $\rightarrow\,$ Flight to quality (Pericolli and Sbracia, 2003)
- $\rightarrow\,$ Self-fulfilling expectations and incomplete information (Keister, 2009)
- $\rightarrow\,$ Irrational or herd behavior (Cipriani and Guarino, 2008)

Contagion versus Interdependence.

- \to shock in one country typically has international repercussions, as a result of market integration and because of fundamental real and financial cross-country links
- \rightarrow Important issue of the increase in asset price comovements across markets and across borders that occurs during financial crises (contagion)

Literature Review

Different measures or definitions of contagion, but...

- $\rightarrow~$ Discontinuities in the international transmission mechanism
- $\rightarrow\,$ Channels of international transmission only active during crises
- $\rightarrow\,$ See Pericoli and Sbracia (2003) or Forbes and Rigobon (2002)

To summarize

 \rightarrow Interdependence is defined as the relationship that exists between asset classes, while Contagion is defined as a change in the transmission mechanism between asset classes in crisis times (Beirne and Gieck, 2002).

Implications:

- $\rightarrow\,$ Relevant problem in the design of policies to contain spillovers
- $\rightarrow\,$ Reduced benefits of portfolio diversification during episodes of financial stress

Literature Review on COVID-19

Studies examining the impact of COVID-19 on stock markets:

- $\rightarrow\,$ Harioto et al. (2021) compare developed and emerging countries' equity markets
- \rightarrow Li et al. (2021) examine the impact on G20 stock markets and volatility connectedness
- \rightarrow Chopra and Metha (2022) compare the contagion effect during different crisis

Almost all studies focus on

- $\rightarrow\,$ Unilateral country setting and the role of COVID 19 measured by new cases, new deaths...
- $\rightarrow\,$ Or change between cross-market linkages during the COVID-19

They do not address whether the specific informational flows contained in pandemic proxies play a significant role in the dynamic of spillovers. We also distinguish between global and regional spillovers.

Contribution

In this paper, we quantify return/volatility spillovers (global and regional) and investigate its determinants with a specific focus on Asian stock markets

- $\rightarrow\,$ We do not focus on whether the increase of stock markets co-movements is due to real or financial interdependence between Asian countries.
- $\rightarrow\,$ We aim at detecting the occurrence of contagion defined as a change affecting linkages between financial markets
- $\rightarrow\,$ Then we investigate whether COVID-19 related variables can explain the observed returns spillovers within the Asian region

We assume the notion of contagion as a discontinuous transmission mechanism across stock markets during the COVID-19 (Pericolli and Sbracia, 2003)

Spillover analysis

Step 1: Spillover Index from Diebold and Yilmaz's (2012, 2014)

- $\rightarrow\,$ Data set: United States, China, Hong Kong, Indonesia, Japan, Korea, Malaysia, the Philippines, Singapore, Taiwan, and Thailand
- $\rightarrow\,$ Daily average stock prices of the main domestic indices, from January 5, 2016, to February 22, 2022
- $\rightarrow\,$ We mainly focus on the spillovers from US, China (plus HK), and Taiwan, Singapore and South Korea (regional markets)

VAR model with generalized impulse response approach:

 $\rightarrow\,$ Each element of the forecast error variance decomposition matrix is normalized to compute cross-variance share for all or specific set of pairs.

Introduction 000000	Methodology 0●0	Empirical results 000000000	Conclusion 00
Panel estimation			

Step 2: Panel estimation

$$spillover_{i,j,t} = \alpha_i + \beta \ CASE_{i,t} + \gamma \ DEATH_{i,t} + \delta \ STRG_{i,t} + \zeta \ GOV_{i,t} + \eta \ FX_{i,t} + \theta \ VIX_t + \rho \ OIL_t + \kappa \ USEPU_t + \lambda \ CNEPU_t + \varepsilon_{i,t}$$
(1)

- \rightarrow We focus on the numbers of new cases and new deaths, government policy measures against the COVID-19 in Asian countries (degree of restriction and economic support)
- $\rightarrow\,$ We control for nominal exchange rates, VIX, oil price returns and economic policy uncertainty (in US an China)
- $\rightarrow\,$ Sample period: January 9, 2017, to February 18, 2022

COVID-19 variables:

- \rightarrow Oxford Covid-19 Government Response Tracker (OxCGRT)
- \rightarrow https://github.com/OxCGRT/covid-policy-tracker
- \rightarrow STRG: composite measure based on nine response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest)
- $\rightarrow\,$ GOV: Domestic government support index records measures such as income support and debt relief.

Empirical results 000000000

Sub-sample analysis

Step 3: We repeat the same exercise on three different subsamples

- \rightarrow Period 1 (lockdown): January 6, 2020-July 18, 2021
- \rightarrow Period 2 (relaxing): July 19, 2021-October 31, 2021
- $\rightarrow\,$ Period 3 (Omicron WHO): November 1, 2021-February 18, 2022

Methodology 000 $\substack{ \text{Empirical results} \\ \bullet 00000000 \\ \end{array} }$

Conclusion 00

Gross-sum spillover

$$S^{sum}(H) = \frac{\sum_{i \in G} \sum_{j \in G, i \neq j} \widetilde{\theta}_{ij}^g(H)}{N} \times 100.$$

Methodolog 000 Empirical results $0 \bullet 00000000$

Conclusion 00

Spillovers (Sample period: 2016.01.05-2022.02.22) (Full sample)

	DJ	CHN	HKG	IDN	JPN	KOR	MYS	PHL	SG P	THA	TWN	OIL	From Others
DJ	36.6	0.1	5.9	5.4	8.9	8	4.2	3.7	9.9	7.7	7.2	2.4	63
CHN	1.9	38.8	16.6	3	5.7	7.7	3.6	1.8	7.9	3.9	8.2	0.8	61
HKG	2.4	0.2	31.2	4.4	8	12.6	6.3	3.4	12.5	6.7	11.2	1.1	69
IDN	2.9	0.1	6.2	43.6	2.4	7.5	6.4	9.4	7.7	5.9	7	1	56
JPN	6.1	0.2	9.6	2.2	37.5	12.8	4.4	2.4	9.9	3.7	10	1.1	63
KOR	3.4	0.1	11.7	5	10	29.1	6.2	4.2	10.9	5.8	12.5	1	71
MYS	3	0	7.7	5.7	4.9	8.1	38	6.8	9.8	6.7	7.9	1.4	62
PHL	2.1	0	5.5	9.5	3.6	7.5	7.8	42.4	7.6	6.3	6.3	1.3	58
SGP	4	0.1	11.7	5.2	7.8	11	7.5	4.6	29.4	8.2	9.1	1.5	71
THA	2.9	0.1	8.4	5.2	4	8	6.9	5.7	11.1	40.3	6.5	0.9	60
TWN	3.8	0.1	11.3	5.1	8.5	13.3	6.5	4.2	9.8	5.1	31.1	1.2	69
OIL	0.1	0.1	1.9	1.5	2	0.9	1.1	0.6	2.1	1.1	1	87.6	12
Contribution to others	33	1	97	52	66	97	61	47	99	61	87	14	714
Contribution including own	69	40	128	96	103	127	99	89	128	101	118	101	59.50%

Benjamin Keddad^a, Takashi Matsuki^b and Kimiko Sugimoto^c (alphabetic order)

Introduction 000000 Methodolog 000 $\begin{array}{c} \text{Empirical results} \\ \text{OO} \bullet \text{OO} \text{OO} \text{OO} \\ \end{array}$

One-way spillover from Dow Jones return to each stock/oil price return

$$S_{USA\cdot i}^{give}(H) = \frac{\sum_{j \in USA} \tilde{\theta}_{ij}^{g}(H)}{12} \times 100, \ i \in Asia \ and \ Regional$$

Introd		
	oc	

One-way spillover from CHN+HKG stock return to each stock/oil price return

$$S_{CHN+HKG\cdot i}^{give}(H) = \frac{\sum_{j \in \{CHN,HKG\}} \tilde{\theta}_{ij}^{g}(H)}{12} \times 100, \quad i \in \{\text{IDN, JPN, KOR, MYS, PHL, SGP, THA, TWN}\}$$

Benjamin Keddad a , Takashi Matsuki b and Kimiko Sugimoto c (alphabetic order)

Introd		tion
	00	

One-way spillover from Regional stock return to each stock/oil price return

$$S_{Regional \cdot i}^{give}(H) = \frac{\sum_{j \in Regional \cdot \tilde{\theta}_{ij}^{g}(H)}}{12} \times 100, i \in Asia$$

Methodolog 000 Conclusion 00

Spillovers (Sample period: 2016.01.05-2019.12.31) (Before COVID-19)

	DJ	CHN	HKG	IDN	JPN	KOR	MYS	PHL	SG P	THA	TWN	OIL	From Others
DJ	43	0.2	6.8	2.8	9.8	7.2	5.2	3.4	6.8	3.2	8	3.5	57
CHN	2.6	39	17.7	2.4	5.2	7.4	2.8	2	8.5	3	8.5	1	61
HKG	3.1	0.5	29.5	4.6	7.5	12.4	6.1	3.6	13.4	5.6	12.2	1.4	71
IDN	2.8	0.5	7.5	48.4	1.9	6.2	8.4	7.5	6.2	3.2	7.1	0.4	52
JPN	7.3	0.4	9.6	1.4	37.4	11.7	4.6	2.8	9.5	3.2	9.7	2.4	63
KOR	3.6	0.2	13.6	4.1	10	31.9	5.8	3.6	9.7	4.4	11.8	1.2	68
MYS	4	0.1	8.3	6.8	4.8	7	39.3	6.8	8.5	3.1	9.7	1.4	61
PHL	3.9	0.1	6.4	7.5	3.5	5.6	8.4	47.5	5.5	3.6	7.1	0.9	53
SGP	3.7	0.2	14.8	4.1	8	9.7	7	3.6	32.4	5.1	9.5	1.8	68
THA	1.9	0.3	9.7	3.4	4.1	7	4	3.1	8	50.9	6.3	1.4	49
TWN	4.9	0.2	13	4.6	8.1	11.6	7.8	4.6	9.2	3.9	31.2	0.9	69
OIL	0.3	0.4	1.9	0.4	1.7	2.2	0.6	0.8	2.4	2.5	1.2	85.6	14
Contribution to others	38	3	109	42	64	88	61	42	88	41	91	17	684
Contribution including own	81	42	139	91	102	120	100	89	120	92	122	102	57.00%

Benjamin Keddad^a, Takashi Matsuki^b and Kimiko Sugimoto^c (alphabetic order)

Methodology 000

Spillovers (Sample period: 2020.01.02-2022.02.22) (During COVID-19)

	DJ	CHN	HKG	IDN	JPN	KOR	MYS	PHL	SG P	THA	TWN	OIL	From Others
DJ	27.9	0.1	5.5	8.4	9	7.9	3.5	6.2	12	10.5	7.2	1.9	72
CHN	1.7	35	14.9	4.2	6.1	9.1	4.9	1.7	7.4	5.8	8.2	1.1	65
HKG	2.1	0	31.9	4.3	8.1	13.3	6.6	3.2	11	7.9	10.3	1.2	68
IDN	3.4	0.1	5.4	38.3	3.2	8.3	5.2	10.7	9.1	7.9	6.9	1.5	62
JPN	5.4	0.1	9	3.3	36	14	4.2	2.3	10	4.5	10.2	0.9	64
KOR	3.4	0.1	11.1	5.7	10.9	26.8	6	4.5	11.6	6.3	12.6	1	73
MYS	2.3	0	7.5	5.2	5.8	8.3	37.1	6.6	10.5	8.6	6.3	1.7	63
PHL	1.4	0.1	4.9	11	5.3	8.7	7.1	37.5	9.2	7.4	5.8	1.6	62
SGP	4.4	0	9.2	6.3	8	11.7	7.6	5.2	27.1	10	8.7	1.7	73
THA	3.5	0.2	8	6.7	5.3	7.9	7.9	6.5	12.4	34.3	6.4	0.9	66
TWN	3.1	0.1	10.1	5.5	9.5	14.3	5.3	3.9	10.1	5.9	30.7	1.5	69
OIL	0.2	0.1	2.7	2.4	3.4	0.8	1.8	0.8	2.8	1.3	1.3	82.2	18
Contribution to others	31) (1	88	63	75	104	60	52	106	76	84	15	755
Contribution including own	59	36	120	101	111	131	97	89	133	110	115	97	62.90%

Benjamin Keddad^a, Takashi Matsuki^b and Kimiko Sugimoto^c (alphabetic order)

Methodology 000 $\substack{ \text{Empirical results} \\ 0000000 \bullet 0 }$

Conclusion 00

Panel data estimation results

			D	epen	dent var	ia ble	: one wa	y spi	llover			
	fro	n DJ	f to each		from Cl	hinað	kHK to e	ach	from F	legio	nal to ea	ıch
New cases	0.003				0.010	*			0.030			
	0.003				0.005				0.019			
New deaths	-0.022	***	-0.020	***	-0.033	***	-0.027	***	-0.159	***	-0.139	***
	0.003		0.002		0.003		0.003		0.022		0.023	
Stringency index	0.035	***	0.035	***	0.029	***	0.030	***	-0.039	*	-0.065	***
	0.003		0.003		0.005		0.005		0.022		0.022	
Government support	-0.062	***	-0.061	***	-0.041	***	-0.042	***	0.121	***	0.146	***
	0.005		0.005		0.006		0.006		0.023		0.024	
FX	0.001				-0.015	***	-0.015	***	-0.014			
	0.001				0.004		0.004		0.009			
VIX	-0.006	**			-0.032	***	-0.032	***	-0.083	***		
	0.003				0.003		0.003		0.014			
Oil price	-0.009	***	-0.006	***	-0.102	***	-0.098	***	-0.464	***	-0.427	***
	0.002		0.002		0.004		0.004		0.015		0.013	
US EPU	-0.010	***	-0.011	***	-0.020	***	-0.019	***	-0.054	***	-0.086	***
	0.002		0.002		0.004		0.004		0.016		0.015	
China EPU	-0.001				-0.001				0.003			
	0.001				0.003				0.013			
New deaths in US	-0.003	**	-0.003	**								
	0.001		0.001									
New cases in China					-0.004	**	-0.004	**				
					0.002		0.002					
R-squared	0.71		0.70		0.78		0.78		0.74		0.73	
Constant	Yes		Yes		Yes		Yes		Yes		Yes	
Model	Fixed		Fixed		Fixed		Fixed		Fixed		Fixed	
Observations	4590		4590		3672		3672		3213		3213	
Countries	10		10		8		8		7		7	Γ

Benjamin Keddad^a, Takashi Matsuki^b and Kimiko Sugimoto^c (alphabetic order)

Methodolog; 000 $\substack{ \text{Empirical results} \\ 00000000 \bullet }$

Conclusion 00

Panel data estimation results in three subsamples

	Dependent variable: one way spillover																	
	from DJ to each						í	om	China&H	IK to	each	from Rregional to each						
	1st peri	od	2nd period 3rd period		iod	1st period		2nd period 3r		3rd per	d period 1st pe		od	nd 2nd period		3rd period		
	1/06/202	20~	7/19/20	21~	11/01/20)21~	1/06/2020~		7/19/2021~ 11/01/202		21~	1/06/2020~		7/19/2021~		11/01/2021~		
	7/18/20	021	10/31/2021		2/18/2022		7/18/2021		10/31/2021		2/18/20	22	7/18/20	021	10/31/2021		2/18/2022	
New deaths	-0.026	***	-0.006	***	0.010	***	-0.020	***	-0.002		-0.002		-0.139	***	-0.032	***	-0.001	
	0.005		0.001		0.002		0.004		0.001		0.002		0.023		0.006		0.003	
Stringency index	0.046	***	-0.017	**	-0.026	***	0.0005		0.007		-0.020	***	-0.065	***	0.182	***	-0.068	*
	0.005		0.008		0.005		0.004		0.009		0.005		0.022		0.030		0.035	
Government support	-0.076	***	-0.038	***	0.015	***	-0.009	*	0.018		0.022	***	0.146	***	-0.293	***	0.087	**
	0.006		0.010		0.004		0.005		0.017		0.007		0.024		0.035		0.037	
Oil price	-0.008	**	-0.003		0.034	***	-0.040	***	-0.072	***	0.053	***	-0.427	***	-0.153	***	0.028	**
	0.004		0.004		0.005		0.007		0.007		0.007		0.013		0.016		0.012	
US EPU	-0.018	***	0.004	**	0.003		-0.021	***	-0.002		0.008	***	-0.086	***	-0.016		0.002	
	0.004		0.002		0.002		0.005		0.006		0.002		0.015		0.016		0.003	
R-squared	0.69		0.97		0.95		0.76		0.97		0.96		0.73		0.99		0.98	
Constant	Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes	
Model	Fixed		Fixed		Fixed		Fixed		Fixed		Fixed		Fixed		Fixed		Fixed	
Observations	3350		630		610		2680		504		488		3213		441		427	
Countries	10		10		10		8		8		8		7		7		7	

Conclusion

Main results:

- Increase in new deaths in each Asian country decreases the global and regional spillovers in the COVID-19 period
- Global investors may worry more about the accumulating debts from government supports
- Global investors predict that more stringent policies will bring the early end of the pandemic and economic recovery
- In the Omicron predominant period, they change their mind and regard the stringent measure as impediments to economic recovery

Future extension:

- Google research trend
- Liquidity and volume measures
- Compute volatility spillovers

Thanks for your attention