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1. Introduction

The UN Fish Stocks Agreement of 1995 and the command and control tools available
to Regional Fisheries Organizations are instrumental in making marine resource sustain-
ability possible. Several types of regulatory mechanisms have been implemented in the
last twenty years. These range from standard command and control measures (such as
restrictions on targeted species, fish size, gears, and areas or seasons of extraction,) to
concession-managed fisheries, with or without limited tenure (Costello and Kaffine [17],
Costello et al. [19], Costello and Grainger [16]). Other examples include quotas versus
landing taxes (Hannesson and Kennedy [27]), market-based instruments like Individual
Transferable Quotas (Costello et al. [15]), and the development of marine protected areas
(Smith and Willem [52]). All of these regulatory mechanisms clearly prevent the fishery
from collapse and, in some cases, even contribute to the development of new practices.
But are these policies themselves sustainable? This undoubtedly raises the old question
of “the cost of fishery management” (Arnason et al [5], Schrank et al.[46]). The risk of
fishery collapse or the argument for population regeneration can, of course, be used to
validate the short-term social cost of these policies. However, once the fish stock has been
restored to a sustainable level, the key factors underlying the Tragedy of the Commons
(Hardin [28]) continue to operate, prompting the pursuit of costly policies to maintain
the stock at its optimal conservation level. The main purpose of this paper is to demon-
strate that an active restoration policy can be replaced by a voluntary regulatory scheme
built on the threat of a new active policy, with this threat serving as a credible deterrent
against deviations from the optimal extraction trajectory.

Supported by case studies1, a growing body of the theoretical literature, following
Ostrom [39], has examined cooperative equilibria for Common Pool Resources that im-
plement socially desirable outcomes. This topic has been explored in several directions.
For instance, strategic games (see Bailey et al. [6] for a review) help to delineate situa-
tions in which a cooperative outcome can be obtained as a competitive subgame perfect
equilibrium (Polasky et al. [40], Tarui et al. [54]). Cooperative games (see Pintassilgo et
al. [41] for a review) have also been introduced to study bargaining solutions, standard
coalitional games (see Lindroos et al. [36] for a review), and even coalition formation
(Ansink-Weikard [3], Ansink et al. [4]). Other papers have investigated the consequences
of introducing context-dependent behaviors, such as conditional cooperation motivations
(Richter and Grasman [42]) or status-seeking behaviors (Long and McWhinnie [37]).
Other contributions have highlighted the specific social norms and/or institutional back-
grounds necessary for these equilibria to emerge (see Vincent [55], Gutiérrez et al. [25],
Basurto and Coleman [7], and Schaap and Richter [44]). Regarding fisheries, the system
of territorial use rights has been emphasized (see, for instance, Costello and Kaffine [18]).

However, most of these approaches primarily focus on self-regulation mechanisms that
provide incentives for cooperation within fisheries. In voluntary approaches (Segerson and

1For recent case studies, see, for example, Haynie et al [30], Cavalcanti et al. [11], and Sarker et al.[43].
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Miceli [47],[48]), the regulator participates in the game. As described by Segerson and
Miceli [47], the regulator uses either a carrot or a stick to stimulate voluntary agreement
on an environmental objective. In the case of the carrot, incentives are provided within
the framework of an existing policy2. In the case of the stick, they rely on the threat of an
ex-post sanction in the event of non-compliance with the agreement. Our paper focuses on
the voluntary threat (V-T) approach. In this case, the announcement of a possible future
policy provides an incentive to cooperate and, as it is designed to never be enforced, saves
on regulatory costs. Of course, one can always argue that with a ”hard enough stick,”
most outcomes can be implemented. However, unlike traditional regulatory mechanisms,
the mandatory policy that acts as a threat requires a legislative process before being
enforced. In other words, if the voluntary agreement is broken, the announced regulation
may likely not be enforced (see, for example, Glachant [22]) or at least be renegotiated,
as in Fleckinger-Glachant [20]. In any case, the strength of the stick must be defined to
ensure that it becomes an acceptable mechanism (as in Suter et al. [53], Chiambretto and
Stahn [12]).

Such collective V-T approaches have primarily been studied as de facto arrangements
in standard contexts of pollution regulation (e.g., Segerson and Wu [49], Dawson and
Segerson [23], Ahmed and Segerson [1] or Brau and Carraro [8]). Our objective is to
extend this type of regulation to dynamic externalities specific to common property re-
source (CPR) management issues. Specifically, we consider the case of renewable fish
stocks and the regulation of their persistent over-exploitation. To our knowledge, only
a few papers have explicitly mentioned voluntary conservation agreements based on a
legislative threat. This issue has been advocated for fisheries management based on col-
lective rights (e.g., Zhou and Segerson [56] and Holland [31]). In this context, rights are
allocated to groups of vessels, with a penalty applied when the group exceeds its allowable
limit (for a description of these penalties, see Bellanger et al. [9]). Langpap and Wu [33]
and Langpap [32] addressed the conservation of endangered species, but their approaches
mainly focused on terrestrial species living on private lands. Specifically, they analyzed
when such agreements arise in a two-period model with uncertainty about the species’
survival and irreversible investment in conservation. In contrast, our analysis considers a
continuous-time setting without uncertainty and examines a V-T mechanism designed to
deter deviations from the conservation path. A similar method was used by Mukherjee [38]
to regulate a stochastic, non-marketable by-catch. This paper presents the background
threat of a permanent tax to incentivize fishermen to voluntarily make an effective avoid-
ance choice. This tax, which is activated above a certain by-catch threshold, is chosen to
enforce compliance. More recently, Selles et al. [50] adopted an experimental approach
and examined whether the threat of economic sanctions guarantees the sustainability of
fisheries.

The main finding of this paper is that an active fish stock conservation policy can be
replaced by a well-designed V-T mechanism that avoids a large portion of the regulatory

2e.g., when used in a policy mix coupled with command and control, see Borkey et al. [10])
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costs. To illustrate this argument, we introduce a standard bio-economic model in the
Gordon-Schaefer tradition ([24], [45]). Assuming that the optimal level of conservation
is achieved through a mandatory regulatory policy, we ask whether, in a conservation-
oriented context, such a costly mandatory policy can be replaced by a V-T mechanism
that only requires the monitoring of the fish stock. This mechanism relies on the an-
nouncement of a new mandatory policy if a decline in fish stocks is observed. In other
words, the regulator simply wields a stick to stimulate compliance. However, moving
from an announcement to an effective policy is not straightforward. Before a policy can
be enacted, it must be adopted by a legislative body through a political process. In static
models, this process is often represented by the probability that the policy will not be
adopted. In our dynamic framework, we replace this assumption with the existence of a
random delay between the detection of the deviation and the activation of the announced
policy. This delay corresponds to the time required to negotiate and adopt the policy.
This initial announcement must therefore be acceptable in order to be turned into a leg-
islative action, and it must also deter any deviation from the optimal conservation path.
For this reason, our V-T mechanism is based on two main pillars. The first simply re-
stores and preserves the conservation level. It takes the form of a moratorium, coupled
with financial compensation to ensure acceptability, and is followed by a standard system
of individual transferable quotas. The second pillar is designed to discourage any devia-
tion from the optimal conservation path. It consists of a tax on fishing capacity, which
reduces the expected gain from any deviation that occurs during the period between the
detection and the implementation of the policy. This tax is, of course, set at the lowest
possible level. Consequently, the simple announcement of the policy helps maintain the
optimal conservation path. However, the question arises as to whether this capacity tax is
excessive, or to what extent it is sensitive to delays. Little can be said about these points
from a theoretical perspective. This is why, in the final section, we introduce the case
of scallop harvesting in the Bay of Saint-Brieuc (France). In this example, we explicitly
derive the tax rate and study its relationship with the average delay.

The remainder of this paper is organized as follows. Section 2 presents the bio-
economic model and the optimal conservation level. Section 3 presents the V-T mech-
anism. Moving backward in time, Section 4 discusses the outcome of the fishing game
after the policy’s implementation. These results contribute to Section 5’s analysis of the
expected gain of a deviation from the optimal conservation level. Section 6 characterizes
the tax rate that deters deviation and studies its relationship with the average delay.
The case of the scallop fisheries is presented in Section 7, and Section 8 provides some
concluding remarks. Technical proofs are presented in the appendix.

2. Optimal conservation in a bio-economic model

This section briefly presents the main assumptions that characterize single-species
fisheries and introduces the optimal conservation target as the solution to the ”sole owner”
problem. These elements will be used to define our V-T conservation mechanism in the
next section.
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2.1. A simple bio-economic model

We consider N > 1 symmetrical agents, indexed by i, who jointly harvest a common
renewable resource over an infinite horizon, [0,+∞[. The resource stock at time t, mea-
sured in units of biomass, is denoted by S(t). Our analysis builds upon the widely used
Gordon-Schaefer model of fisheries (see, among others, Clark-Munro [14] and Clark [13]).
Accordingly, S(t) evolves over time due to natural growth and harvest. This stock is con-
strained by K, the carrying capacity of the resource, so that S(t) ∈ [0, K]. The resource
grows at a natural rate r(S), which decreases with the size of the biomass, r′(S) < 0, and
stops growing when K is reached, r(K) = 0. We further assume that the maximal growth
rate r(0) is bounded and that r”(S) ≤ 0, meaning that the rate of growth decreases over
[0, K] at an increasing rate. The maximal harvest per capita at time t is given by qS(t),
where q is a coefficient of catchability that reflects the maximal extraction capacity of
each agent. The effort variable, ei(t) ∈ [0, 1], captures the combined flow of labor and
capital services exerted by i for the purpose of extraction. Yields are linear in effort up
to the maximal harvest qS(t). The dynamics of the biomass are therefore given by:

Ṡ(t)
S(t)

= r(S(t))− q
(∑N

i=1ei(t)
)
, with S(0) = S̄ the initial state. (1)

Still in the Gordon-Schaefer ([24], [45]) tradition, we assume that the yields are sold in
a competitive market and that the instantaneous profit of each agent is proportional to his
harvest. Specifically, π(S) denotes the profit per unit of harvest qS(t)ei(t) ∈ [0, qS(t)] for
a given effort ei(t) ∈ [0, 1]. We also assume the existence of a minimal biomass stock, Smin,
for which this profit becomes positive. Moreover, it should be noted that the same effort,
ei(t), leads to higher captures if applied to a larger biomass and therefore reduces the
cost of effort per unit of harvest. This implies — at least under pure competition — that
the profit per unit of harvest increases with the biomass, i.e., π′(S) > 0. We nevertheless
assume that the rate of increase (π′(S)/S) of this profit function is a decreasing function.
This is equivalent to assuming that the elasticity of π′(S) is smaller than −1, i.e., eπ′(S) =
π”(S)S
π′(S)

< −1. 3 Each agent seeks to maximize the present value of its instantaneous
returns. If ρ > 0 denotes the discount rate, this quantity is given by:

Ri(S(·), ei(·)) =
∫ +∞

0

e−ρt [π (S(t)) qS(t)ei(t)] dt. (2)

Finally, note that the catchability coefficient q can also be viewed as the individual
maximal rate of depletion of the resource. Since this paper focuses on endangered re-
sources, we assume that the total rate of depletion exceeds the growth rate of the biomass
when harvesting becomes profitable, i.e., nq > r(Smin).

3This is, for instance, the case when the fish stock is sold at a competitive price p and the marginal
cost c per unit of effort is constant. In this case π(S) = p − c

qS and for S > Smin = c
qp , we have

π′(S) = c
qS2 > 0 and π”(S) = − 2c

qS3 < 0, so that eπ′(S) = −2.
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2.2. The optimal conservation target

The construction of our V-T mechanism requires the introduction of the endogenous
optimal conservation level that the policy aims to target. In our setting, over-exploitation
is a consequence of open access alone, Therefore, the optimal conservation level can be
viewed as the steady state that solves the joint-rent maximization problem. This is given
by:

max
(ei(t))Ni=1∈[0,1]N

∫ +∞

0

e−ρt [π(S(t))qS(t) (
∑n

i=1ei(t))] dt (3)

with Ṡ(t) = S(t) (r(S(t))− q (
∑n

i=1ei(t))) , S(0) = S̄ > 0. (4)

Since both the instantaneous returns and the dynamics are linear in the total harvest, the
problem can be expressed as the following variational problem:

max
Ṡ(t)

∫ +∞

0

e−ρ
[
π(S(t))

(
S(t)r(S(t))− Ṡ(t)

)]
︸ ︷︷ ︸

f(S(t),Ṡ(t),t)

dt (5)

with Ṡ(t) ∈ [S(t) (r(S(t))− nq) , S(t)r(S(t))] . (6)

From the Euler-Lagrange condition, we know that:

d

dt

∂f

∂Ṡ
=

∂f

∂S
⇔ ρπ(S) = (r(S)Sπ(S))′ (7)

The (singular) solution SFB ∈ (Smin, K) to this equation defines the optimal conservation
target according to Hotelling’s rule. Specifically, at the optimal conservation level, the
financial return from the profit generated by the last unit of fish caught equals the marginal
benefit of leaving that unit in the sea, as expressed by Eq.(7):

ρπ(S) = π′(S)r(S)S + π(S)r′(S)S + π(S)r(S) (8)

This conservation value considers the increase in profit per unit of catch, the gain gener-
ated by the increase in the fish population, and the mechanical increase in profit due to
applying the same effort to a larger population. By considering the population dynamics
given by Eq.(4)), we can now couple the optimal conservation level with symmetrical
individual efforts that maintain the resource at SFB. This sustainable effort is:

∀i, eFB
i = eFB = r(SFB)

nq
∈ (0, 1) (9)

It should also be noted that eFB is strictly less than one, as we are considering the case
of endangered species, i.e., r(SFB) < r(Smin) < nq. In this case, the total fishing capacity
exceeds the reproduction rate of the fish population evaluated at the optimal conservation
level.
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We can further analyze this case. Following Hartl and Feichtinger [29], Sethi [51], and
Anaya et al. [2], we know that the optimal solution to this problem is given by the Most
Rapid Approach Path (MRAP) to the optimal conservation level SFB. Consequently, if
the initial stock S0 falls below SFB, the optimal approach to the stationary state involves
no extraction during a recovery period until SFB is reached at some switching time.
Subsequently, the steady state is maintained with regular effort levels, eFB. Conversely,
if the trajectory is initiated in S0 ≥ SFB∗, the maximal harvesting effort is required from
each harvester until SFB is reached, after which they must collectively reverse to eFB.
More precisely, we can state that:

Proposition 1. Under our assumptions, the path of the biomass that solves problem (3)
is given by SFB(t, S̄), the MRAP to the unique optimal conservation level, SFB. This level
is reached at a finite time T (S̄), and the individual optimal effort eFB(S(t)) is either 0 or
1, depending on whether S(t) ≶ SFB, or switches to eFB, the sustainable effort, when the
optimal conservation level is reached, i.e, when S(t) = SFB.

3. A V-T conservation mechanism

Even when an optimal conservation state, S0 := SFB, is reached — for instance,
through a standard system of Individual Transferable Quotas (ITQ) — the usual driv-
ing forces behind the tragedy of the commons persist and require constant monitoring.
The regulator must therefore decide whether to maintain the ITQ system, bearing the
associated administrative costs, or to shift to a V-T conservation mechanism that only
requires monitoring the biomass S(t). This last conservation policy begins with the ex-
ante announcement that a new mandatory policy will be implemented if a change in the
level of biomass is observed. The threat of this policy is the core of the conservation
mechanism. It rests on two pillars. On one hand, it signals the regulator’s readiness to
revert to a standard ITQ system to manage optimal conservation. On the other hand,
since overfishing is often linked to excess harvesting capacity (see, for instance, Schaap
and Richter [44]), this new policy also introduces a threat in the form of a tax on that
excess capacity. The primary objective of this announcement is to deter any deviation
from the optimal conservation target, thereby encouraging voluntary compliance without
the need to implement the policy. To some extent, this threat can thus be viewed as the
trigger for a coordination game involving the regulator.

However, implementing such a V-T conservation mechanism is far from straightfor-
ward (see Fig.1). In the undesirable event that the threat becomes effective, the regulator
faces two challenges: managing an uncertain implementation schedule and addressing the
acceptability of the mandatory policy. The uncertain timetable arises from the announce-
ment. As no policy is effective at the time of detection, t = td, when a change in the
optimal conservation stock is observed, the new mandatory policy must first be adopted
by a legislative body through a political process before it can become effective. In this
paper, we do not explicitly model this process (unlike Glachant [22], for example). We
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Figure 1: The V-T mechanism

simply state that the process takes time, meaning the policy becomes mandatory at a ran-
dom time t̃m ≥ td, creating a window of potential overfishing. This political bargaining
also raises the question of acceptability. In fact, the mandatory policy may resemble a col-
lective punishment, especially if a short-term moratorium is imposed, as suggested by the
optimal MRAP solution (see Proposition 1). Acceptability requires at least a monetary
compensation during the moratorium period. Accordingly, we assume that every fishery
receives a subsidy during this period, equal to the profit it would have earned along the
optimal conservation path. We also introduce a tax, τx, in this announcement on har-
vesting capacity to discourage deviations. This tax is designed to capture the benefits
expected from deviations during the period before the mandatory policy is activated.

It remains to introduce a few additional notations and assumptions to incorporate
these various elements. Let us first consider the random delay, ∆̃. Under full uncertainty,
we assume that the likelihood of the mandatory regulation becoming effective between t
and t+ dt, given that it has not been enforced before t, is a constant. 4 In this case, the
random delay follows an exponential law with cumulative distribution:

∀t ≥ td, F (t, td) = P
[
∆̃ ≤ t− td

]
= 1− e−δ(t−td), (10)

and the average delay is given by E(∆̃) = 1
δ
. Consequently, the probability that the

mandatory regulation has not been implemented after a delay of (t− td) is (1− F (t, td)) =
e−δ(t−td). Moreover, to ensure that the delay meaningfully influences the decision process,
we assume that the instantaneous rate of occurrence, δ, of the mandatory regulation is
larger than the discounting rate, i.e., δ > ρ.

Let us describe the announced regulation mechanism. This mechanism begins at a
random date, t̃m, and at a random fish stock level, S(t̃m) < SFB. The first stage involves
restoring the fish population through a Moratorium, which ends at date ti(t̃m). This
date depends on the random component

(
SFB − S(t̃m)

)
of the stock that needs to be

replenished. From the acceptability principle, the harvesters are compensated during
this period. They receive a subsidy corresponding to the profit that they would have

4Formally, this means that hazard function is constant over time, i.e., δ(t) =

limdt→0
P [t≤td+∆̃≤t+dt | ∆̃≥td+t ]

dt = Ḟ (t)
1−F (t) = δ
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obtained on the compliance path. Since the individual sustainable effort at the optimal

conservation level SFB is eFB = r(SFB)
nq

(see Eq.(9)), the compensation provided to each

t ∈
[
t̃m, ti(t̃m)

)
is:

C(SFB) = π
(
SFB

)
qSFBeFB =

π(SFB)SFBr(SFB)

n
(11)

After the date ti(t̃m), a standard ITQ system applies. For t ∈
[
ti(t̃m),+∞

)
, ωi(t) denotes

the harvesting quota allocated to agent i at time t, and pω(t) represents the quota price.
Since the conservation stock is maintained for t ≥ ti(t̃m), the following condition must
hold: ∑n

i=1ωi(t) = nqeFBSFB = r(SFB)SFB (12)

i.e, the total number of quotas corresponds to the fish extraction at the sustainable effort
level, which equals the growth of the fish population. The second pillar of this announced
mechanism is the fleet capacity charge. This tax is crucial because it ensures that the
announcement deters any deviation from the optimal conservation path in a deterministic
manner, even if the policy’s start is random. We propose imposing a tax on the profits
that could be made by harvesting at full capacity. Specifically, by setting e = 1, the
catchability coefficient determines an individual maximum harvest of qSFB at the optimal
conservation level, while the profit per unit of harvest is π(SFB). By announcing a tax
rate of τx, this tax rule becomes:

T
(
SFB, τx

)
= π(SFB)qSFBτx, (13)

This tax rate is specifically chosen to deter any deviation from the conservation path. The
remaining question is how the regulator sets this announced tax. To do so, the regulator
must estimate the potential gain a deviator expects when deciding to modify his fishing
effort at time td.

When considering such a deviation, we must account for two time segments which
follow two different rationales. For t ∈

[
td, t̃m

)
, the deviation follows a standard approach,

where the expected payoff from a deviation is based on an optimal effort choice during
this period, combined with a conjecture about the opponents’ behavior. On the other
hand, for t ∈

[
t̃m,+∞

)
, a collective punishment is applied, which is known to all. This

means that the payoff expected after t̃m is not the result of a deviation, but is rather the
solution of a game that begins once the mandatory policy applies. Once the equilibrium
returns, which depend on the capacity tax τx, are determined, we can start calculating the
payoff of a deviator. Here, the uncertainty regarding the timing of the mandatory policy’s
implementation becomes significant. Indeed, the deviator will try to plan his efforts over
the entire horizon, from td to t ∈ [td,+∞), by considering the probability of shifting to a
flow of gains corresponding to the mandatory policy at each instant t. To construct this
deviation plan, the deviator forms a belief about the evolution of the fish stock, or, in
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other words, a conjecture about the opponent behaviors. 5 To this end, we introduce a
Nash conjecture, which assumes that the other players remain compliant. After this step,
the task is to set the tax τx at a level where the expected gain from a deviation beginning
at any td is less than the gain achieved along the compliance path. In other words, this
capacity tax, as part of the regulator’s threat, aims to capture the extra profit that the
deviator expects to make between the start of his deviation and the eventual activation
of the mandatory policy, following a political process. The next three sections address
these issues.

4. The returns during the potential mandatory policy

The gains during the mandatory policy (see Fig.1) are the easiest to capture. The
deviator knows that after date t̃m, the collective punishment applies. This means that for
t ∈

[
t̃m, ti(t̃m)

)
, the deviator will first be subject to a fishing moratorium, with financial

compensation of CM(SFB), but also with a capacity tax of T
(
FB, τx

)
. The deviator’s

instantaneous earnings during this period are:

vM(τx) = CM(SFB)− T
(
SFB, τx

)
= π(SFB)SFB

(
r(SFB)

n
− qτx

)
(14)

After the reconstitution of the fish stock at date t = ti(t̃m), each player can resume
fishing, but now under an ITQ regulation system and subject to the same capacity tax.
The question, therefore, is to construct the equilibrium gain of each player, especially the
deviator. In this scenario, each harvester chooses his optimal effort by maximizing the
present value of his profit, considering that he must cover his instantaneous harvest by
purchasing rights at a competitive price pω(t) ≥ 0. Each harvester then solves:

max
ei(t)

∫ +∞
ti(t̃m)

e−ρt
(
π(S(t))S(t)qei − pω(t) (qeiS(t)− ωi(t))− T

(
SFB, τx

))
dt (15)

with Ṡ(t)
S(t)

= r(S(t))− q (
∑n

i=1ei(t)) , S(ti(t̃m)) = SFB > 0 (16)

and the tradable quota market satisfies a free disposal equilibrium condition at each
instant, i.e.:

∀t ∈
[
ti(t̃m),+∞

)
,

{
pω(t) (

∑n
i=1ωi(t)−

∑n
i=1qeit)S(t)) = 0

(
∑n

i=1ωi(t)−
∑n

i=1qei(t)S(t)) ≥ 0
(17)

This condition simply states that, at a given time t, if there are too many rights on the
market relative to fish landings, the price pω(t) must be zero. Conversely, if the price of
rights is strictly positive, the quantity of rights is binding and equals the fish landings.

5Note that the deviator’s belief about the evolution of the fish stock does not need to be consistent
with any observed path. This is because, by design of the V-T mechanism, the path is never induced by
a deviation.
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Now the question arises: does this ITQ mechanism preserve the optimal conservation
level SFB? To answer this, we must ensure that, for each t ∈

[
ti(t̃m),+∞

)
, there exists

a fishing rights price pω(t) and an initial distribution of rights (ωi(t))
n
i=1 such that: (i)

the free disposal equilibrium conditions (Eq.(17)) are satisfied; and (ii) for each fishery,
the optimal effort path solution to program (15) corresponds, for each t ∈

[
ti(t̃m),+∞

)
,

to the effort eFB that sustains the optimal conservation level SFB (given by Proposition
1). In a context of complete information, this can be achieved by implementing a no-
trade equilibrium. In this case, the regulator distributes quotas corresponding to the fish
landings that support the optimal conservation policy. These quotas are given by:

∀i, ∀t ∈
[
ti(t̃m),+∞

)
, ωi(t) = ω = qeFBSFB = r(SFB)SFB

n
(18)

If the fisheries are compliant, this automatically induces a no-trade situation. This means
that, according to Eq.(17), the price pω(t) remains indeterminate. Therefore, it remains to
set the path of the quota price such that it is optimal for each fishery to remain compliant.
This price path is fixed as6 :

∀t ∈
[
ti(t̃m),+∞

)
, pω(t) = pω =

(n−1)(eπ(SFB)+1)r(SFB)π(SFB)

nρ−r(SFB)−nSFBr′(SFB)
> 0 (19)

with eπ(S) denoting the elasticity of the profit function.
By setting the quota distribution and their price according to Eqs.(18) and (19) and

by solving the (singular) program (15), we show that the optimal strategy of every fishery
in response to compliant effort levels of their opponents is to choose efforts ei(t), t ∈[
ti(t̃m),+∞

)
, which induces a MRAP to the optimal conservation stock SFB. As these

dynamics only start when the optimal conservation level SFB is reached, we can assert,
as expected, that the constant effort functions ei(t) = eFB for i = 1, . . . , n constitute a
Nash equilibrium of the ITQ game and that the fish stock remains constant and equal
to the optimal conservation level SFB. As a result, we can easily estimate an agent’s
instantaneous payoff during this ITQ stage. According to the non-trading equilibrium on
the quota market and the Nash equilibrium described above, this payoff is the same for
each player and remains constant over time t ∈

[
ti(t̃m),+∞

)
. The payoff is given by:

vITQ(τx) = π(SFB)SFBqeFB − T
(
SFB, τx

)
= π(SFB)SFB

(
r(SFB)

n
− qτx

)
(20)

Finally, returning to our original problem of estimating the gain from deviating from the
V-T conservation mechanism, we can say that:

Proposition 2. If a fisherman deviates from a V-T conservation mechanism at time td,
he knows that:
(i) After a random delay following his deviation, i.e, at date t̃m, he is assigned a morato-
rium until the optimal fish stock is recovered. During this period

[
t̃m, ti(t̃m)

)
, his instan-

taneous yield vM(τx) remains constant and is given by Eq.(14)

6The strict positivity of this price is checked in Appendix B
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(ii) After date ti(t̃m), the ITQ system is implemented. At the Nash equilibrium of this dy-
namical game, the fisherman’s instantaneous yield vITQ(τx) is constant over

[
ti(t̃m),+∞

)
and is given by Eq.(20)
(iii) As vM(τx) = vITQ(τx), the instantaneous gain expected from a deviation after the
regulation is implemented, remains constant over t ∈

[
t̃m,+∞

)
and is given by:

vR(τx) = π(SFB)SFB
(

r(SFB)
n

− qτx

)
(21)

5. The expected gain from a deviation starting at time td

Stepping back (see Fig. 1), we now evaluate the gain of a fishery that decides to leave
the compliance path at time td. The rationale is somewhat different in this case. At that
moment, the deviator defines a new effort plan over the rest of the horizon, considering
that, at some future random date t̃m, his payoff will switch to the one described in
Proposition 2. In other words, the deviator maximizes an expected discounted gain. As
the probability that the policy will not be implemented before t > td is (1− F (t, td)), the
return starting from td, is given by:

Vd(τx, td) = max
e(t)∈[0,1]

∫ +∞

td

e−ρt
[(
π(Sd(t))Sd(t)qe(t)

)
(1− F (t, td)) + vR(τx)F (t, td)

]
dt

(22)
However, to optimally adjust his effort plan, the deviator needs to predict the evolution of
the fish stock Sd(t) or, in other words, form beliefs about the behavior of the other players.
In the Nash tradition, we assume that he conjectures that the others remain compliant

and select an effort of eFB = r(SFB)
nq

. His belief about the motion of the biomass is thus
given by:

Ṡd(t)
Sd(t)

= r(Sd(t))−
(
qe(t) + (n−1)

n
r(SFB)

)
, Sd(td) = SFB (23)

Moreover, this belief does not need to be consistent with observations since, by the con-
struction of a V-T policy, we know that this deviation will never be played. It is simply
a belief about the motion of the biomass based on a Nash conjecture.

This program, however, remains a singular control problem, as both the instantaneous
objective and the dynamics are linear in the control variable. At first glance, it may appear
to be a non-autonomous problem due to the introduction of a time-dependent switching
probability. This generally implies that the singular stock is time-dependent. However,
as the rate of occurrence of the mandatory regulation is constant over time, the singular
stock, SD, remains time-independent and satisfies the following Euler-Lagrange condition:

(ρ+ δ) π(S) = ∂s
(
π(S)S

(
r(S)− n−1

n
r(SFB)

))
(24)

= π′(S)S
(
r(S)− n−1

n
r(SFB)

)
+ π(S)

(
r(S)− n−1

n
r(SFB)

)
+ π(S)Sr′(S) (25)
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This condition is again related to the Hotelling rule introduced in Eq.(7). However, it now
considers the random stopping time and only considers the private gains. Specifically, the
left-hand side of Eq.(24) represents the financial returns from the profit induced by the
last unit of fish caught, albeit at a higher interest rate to reflect the potential shift to
a mandatory policy. The right-hand side of Eq.(24) only considers the private marginal
gain from leaving that unit at sea, assuming the opponents’ behavior is fixed. Now, let
us observe that Eq.(24) can also be written as follows:

ρπ(S)− ∂s (π(S)Sr(S)) = −
(
δπ(S) + n−1

n
r(SFB)∂s (π(S)S)

)
(26)

From Eq.(7), the left-hand side of Eq.(26) is zero at S = SFB, and by the existence of a
MRAP path to SFB (see (2) of Appendix A), we also know that this part of the equation
is non-negative for S ≥ SFB. As the right-hand side of Eq.(26) is negative, the singular
stock level, Sd, targeted by the deviator is below the optimal conservation level, SFB,
meaning that the deviator plans to over-harvest the resource. However, this does not
imply that his harvesting strategy follows an MRAP path, where he initially harvests at
capacity and, at some point, switches to an effort that stabilizes the biomass at Sd. This
also requires the existence of a long-run effort ed, which belongs to [0, 1] and stabilizes
the MRAP path at Sd. According to Eq.(23), a quick calculation yields:

r(Sd)−
(
qed + (n−1)

n
r(SFB)

)
= 0 ⇔ ed =

1

q

(
r(Sd)− (n−1)

n
r(SFB)

)
(27)

We can therefore claim that this effort is more important than its counterpart on the first
best path, i.e. ed > eFB. In fact, since the population growth rate r(S) decreases and
Sd < SFB, we have:

r(Sd) > r(SFB) ⇔ r(Sd)− (n−1)
n

r(SFB) > 1
n
r(SFB) ⇔ ed > eFB (28)

However, this does not mean that ed ≤ 1. Two situations must therefore be considered
depending on whether r(Sd) − (n−1)

n
r(SFB) ⪌ q. In the first case, the deviator plans to

harvest forever at capacity and never reaches the targeted singular stock level, SD, while
in the second, he first harvests at capacity and then switches to ed when Sd is reached.
Since Sd < SFB, we can say that his belief about the biomass evolution is given by:

SD(t, td) = max
{
Sd(t), Sd

}
where Sd(t, td) solves Eq. (23) for e(t) = 1 (29)

If we now denote by t̄ the time at which Sd(t̄) = Sd or set t̄ = +∞ is Sd(t) never reaches
the singular stock, Sd, the effort planned after the deviation is:

eD(t) =

{
1 for t ∈

[
td, t̄
)

ed = 1
q

(
r(Sd)− (n−1)

n
r(SFB)

)
for t ∈ [t̄,+∞)

(30)

The next proposition summarizes these results.
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Proposition 3. If an agent deviates at time td from the optimal conservation path, we
can say that:
(i) He rearranges his efforts over time to follow the MRAP to a biomass stock of Sd < SFB,

which he reaches (or not) in finite time, depending on whether r(Sd)− (n−1)
n

r(SFB) < (≥)q.
(ii) This planned effort path eD(t), as given by Eq.(30), is always greater than the optimal
conservation effort eFB.
(iii) These new efforts are, according to a Nash conjecture about other players’ behavior,
sustained by a belief on the biomass dynamics SD(t) < SFB, as given by Eq.(29).
(iv) His expected payoff, which accounts for the random delay of policy enforcement, is
given by:

Vd(τx, td) =

∫ +∞

tq

e−(ρ+δ)t+δtd
(
π
(
SD (t, td)

)
SD (t, td) qe

D(t)
)
dt+ vR(τx)

δ
ρ(ρ+δ)

e−ρtd (31)

6. Back to the V-T mechanism

Let us recall that a V-T mechanism relies on the announcement of a potential regu-
lation. Its aim is to discourage any deviation from the optimal conservation path, thus
preventing the implementation of the announced policy. This is where the choice of the
capacity tax rate becomes important. From the previous section, we know from Eq.(31)
what a deviator is expected to gain when he deviates at time td. As the policy takes time
to be activated, this gain is mainly based on two components: the benefits from overfish-
ing until the policy becomes mandatory, and the expected benefits under the mandatory
policy. This capacity tax reduces the overall expected gain, effectively neutralizing the
gain from overfishing. In other words, a well-chosen tax will discourage any deviation
from the conservation trajectory. Let us now proceed to set this tax rate.

On one hand, from Eq.(31), we obtain the expected payoff, Vd(τx, td) of a fishery that
decides to deviate at time td. This payoff includes the potential tax rate. On the other
hand, if this fishery does not plan to deviate at time td, it obtains the present value of
the compliance payoff, which is given by:

Cpl(td) =
∫ +∞
td

e−ρt
[
π
(
SFB

)
SFBqeFB

]
dt = 1

ρ
π
(
SFB

)
SFBqeFBe−ρtd (32)

As a result, a fishery will never plan to deviate if:

∀td ≥ 0, Cpl(td) ≥ Vd(τx, td) (33)

In other words, the regulator should announce the lowest tax rate, τ ∗x , that satisfies the
previous set of inequalities. To estimate τ ∗x , recall that Vd(τx, td) is a linear and decreasing
function of τx (see Eqs.(21) and (31)). Therefore, the minimal tax rate τx(td) that deters
deviation at time td solves Eq.(33) with equality, and due to the linearity, is given by:

τx(td) =
ρ
δ

(∫ +∞

td

(ρ+ δ)e−(ρ+δ)(t−td)
[
π(SD(t,td))S

D(t,td)
π(SFB)SFB eD(t)

]
dt− r(SFB)

qn

)
(34)
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As the announced tax rate needs to deter any deviation whenever it occurs, i.e, for all td,
we can express this as:

τ ∗x = sup
td∈[0,+∞[

τx(td) (35)

The existence of this maximum is not an issue, as we can prove that for all td, τx(td) ∈
[0, τ̄x], where:

τ̄x = ρ
δ

(
1− r(SFB)

nq

)
< 1 (36)

In the context of a voluntary agreement, we must also ensure that the penalty, τ ∗x , is not
too harsh. However, it is difficult to characterize τ ∗x analytically, as it solves a complex
optimization problem. Therefore, acceptability can only be assessed by considering the

upper bound τ̄x of τ ∗x . To understand this bound, recall that effort eFB =
r(SFB)

nq
, which

lies in the range [0, 1] captures the rate of activation of the harvesting capacity. Hence,(
1− r(SFB)

nq

)
represents the rate of excess capacity compared to the optimal conservation

level. Moreover, as the hazard rate is constant, 1
δ
is the average time needed to implement

the policy. This upper bound is, therefore, the product of the discount rate, average delay,
and excess capacity. For example, with a discount rate of 5%, an average delay of two
years, and an excess capacity of 25%,, the upper bound is 2.5%. To fully understand this
tax rate and its relationship to the average policy implementation time, specific cases must
be considered. This will be carried out in the next section. But first, let us summarize
the main results of this section.

Proposition 4. There exists a V-T mechanism that guarantees voluntary compliance
with the optimal conservation level for fish stocks, without the need for any effective pol-
icy. This mechanism is based on the announcement of (i) a moratorium with financial
compensation, followed by an ITQ to maintain the stock at the conservation level, and
(ii) a tax rate on capacity, given by:

τ ∗x = sup
td∈[0,+∞[

ρ
δ

(∫ +∞

td

(ρ+ δ)e−(ρ+δ)(t−td)
[
π(SD(t,td))S

D(t,td)
π(SFB)SFB eD(t)

]
dt− r(SFB)

qn

)
≥ 0 (37)

Moreover, the capacity tax τ ∗x is bounded from above by: ρ
δ

(
1− r(SFB)

nq

)
< 1, which is the

product of the discount rate, average delay, and excess capacity at the optimal conservation
level.

7. An illustration: the scallop fishery in the bay of Saint-Brieuc

The Great Atlantic scallop (Pecten maximus) is emblematic of the Bay of Saint-Brieuc,
located on the northern coast of Brittany (France). This bivalve species is typically found
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on soft, sandy bottoms at depths ranging between 20 and 50 meters below the surface.
Often referred to as ”white gold,” the scallop makes a major contribution to the wealth
of traditional coastal fisheries. This fishing activity began in the early 1960s, and while
scallops were developing rapidly, the resource was soon over-exploited. This led to an
initial round of measures (see Guyader et al. [26]) aimed at limiting the fleet’s fishing
capacity through restrictions on the number and size of boats, as well as on fishing time.
However, this was not enough. Additional restrictions, coupled with scientific monitor-
ing of the scallop stock by IFREMER, were subsequently introduced. These restrictions
included non-transferable individual quotas per vessel, restrictions on dredge mesh size,
and limitations on harvestable shell size. While these restrictions have contributed sig-
nificantly to restoring the scallop population, they have come with a cost, estimated at
300 ke per year in 2006 (see Le Gallic et al. [34]). This situation closely mirrors the
one addressed in our paper, raising the question of whether the introduction of a volun-
tary conservation mechanism to replace the second set of restrictions could lead to a less
costly regulation. It also offers an opportunity to examine the level of the capacity tax
that should be announced, and its relationship with the political delay in implementing
the proposed measures.

The data and functional forms used in this illustration are mainly borrowed from
Frésard and Ropars-Collet [21]. Accordingly, we adopt a logistic growth rate function,
r(S) = r(1−S/K), and a unit profit function per harvest, given by π(S) = (p− c

qS
). The

values of the parameters are summarized in Table 1.

Parameter Description Value
r Intrinsic growth rate 0.649
K Carrying capacity 54 252 tons
p Ex-vessel unit price 2 000 e per ton
q Catchability coefficient 2.961× 10−3

c Unit cost of fishing effort 4 746 e per boat
n Number of vessels 250
ρ Discount rate 0.05

Table 1: The scallop fishery of the Saint-Brieuc Bay

This dataset includes the first set of restrictions on fishing capacity: (i) the number of
boats limited to 250 by a numerus clausus licensing policy, with a maximum boat length
of 13 meters; and (ii) fishing is allowed for only 45 minutes, two days a week, during
the season. However, unlike Frésard and Ropars-Collet [21], who treated restriction (ii)
as a 42-hour upper limit on the yearly individual effort, we multiply their catchability
coefficient and their unit effort cost by 42 to ensure that the effort remains within the
range [0, 1]. Regarding this dataset, we also observe that the minimum biomass stock,
Smin = c

pq
, at which profit becomes positive is approximately Smin ≃ 801.4 tons. This

suggests that this species remains endangered since nq ≃ 0.742 > r(Smin) ≃ 0.639,
meaning the total exhaustion rate is greater than the biomass growth rate at which
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harvesting becomes profitable. This clearly indicates that, in the case of the Bay of St
Brieuc, the first round of restrictions on harvesting capacity was not effective. The second
set of restrictions, based on quotas, mesh size, and harvestable shell size, has proven far
more effective. Consequently, the biomass stock is now largely preserved and close to the
optimal conservation situation described in Table 2.

Variable Description Value
SFB Optimal biomass stock 25 503 tons
Smin Minimal stock for positive profit 801.418 tons

nSFBqeFB Total catch per season 8 771 tons/year
eFB Individual optimal effort 0.4646

SFBqeFB Individual catch per season 35.0834 tons/year
π(SFB)SFBqeFB Individual stationary profits 67 962 e/year
π(SFB)SFBq Individual profit at capacity 146 280 e/year

Table 2: The first best stationary conservation target

However, the control costs associated with this conservation policy are much higher.
This raises the question of introducing a V-T regulation. Let us now build a V-T mech-
anism for the scallop fishery and, in doing so, examine the impact of the average delay,
1/δ, on this policy instrument.

To set up this mechanism, we begin by analyzing the expected gain from a potential
deviation at time td. The yearly profit obtained after the enforcement of the threat is
straightforward to calculate. Using Eq.(21) and Tables 1 and 2, we obtain :

vR(τx) = π(SFB)SFB r(SFB)
n

− π(SFB)SFBqτx = 67962− 146280τx (38)

If we now move to the program of a deviator (Eq.(22), we know from Proposition 3
that the deviator aims to target, for a given δ, a new biomass stock Sd(δ) that solves
Eq.(24). This proposition also indicates that this target can be reached (or not) in finite

time if r(Sd(δ))− (n−1)
n

r(SFB) < (≥)q. In our example, we show (see Appendix E) that
this will never be the case. This means that a fishery that deviates from the compliance
path at time td plans to fish at full capacity, i.e., eD(t) = 1 for t ≥ td, until, at some
random date, the announced regulation comes into effect. This choice is supported by the
anticipation of the fish stock’s evolution (see Eq.(23)), which solves:

ṠD(t)
SD(t)

= −1.1963 · 10−5SD(t) + 0.3035 , SD(td) = 25503 (39)

and, under our logistic growth rate assumption, we also obtain an explicit solution given
by:

SD(t, td) ≃
(
−2.0482 · 10−7e−0.3035(t−td) + 3.9417 · 10−5

)
−1 (40)

16



At this point, we can now compute the expected gain from a deviation. This quantity is
given by: 7:

Vd(τx, td, δ) ≃ e−0.05td

(∫ +∞

0

5.922e−(0.05+δ)x·105
−2.0482·10−2e−0.3035x+3.9417

dx+ δ(67962−146280τx)−237.3
0.05(0.05+δ)

)
(41)

As this function is decreasing in td, we can conclude that if a deviation occurs in the case
of this scallop fishery, it must necessarily take place immediately, i.e. at td = 0

From this last remark, the goal is to prevent any deviation at time td = 0. Since the
other option is to remain compliant, let us first observe from Eq.(32) that:

Cpl(0) ≃ 1
ρ
π
(
SFB

)
SFBqeFB = 1.3592 · 106 (42)

By setting Vd(τx, 0, δ) = Cpl(0), we finally obtain a relation between the optimal tax
choice, τ ∗x , and the hazard rate, δ, which is given by:

τ ∗(δ) ≃ (5+100δ)
δ

∫ +∞

0

e−(0.05+δ)x

−10.1188e−0.3035x+1.9473·103dx− 0.0249
δ

(43)

Additionally, in our model, the average time required to implement the threat can be
identified as 1/δ, the inverse of the hazard rate. We can therefore provide a useful table
for policymakers that matches a tax to announce with their estimation of the time required
by the political process to implement the threat. These results are summarized in Table
3.

Average delay (in years) .5 1 1.5 2 2.5 3 3.5 4
Deterrent capacity tax .013 .027 .040 .053 .067 .080 .093 .106

Table 3: Average policy delay and deterrent capacity tax

To conclude this illustration of the St Brieuc scallop fishery, we can state that the
regulator can replace the costly regulations based on quotas, mesh size control, and har-
vestable shell size with a V-T mechanism, while still preserving the optimal conservation
stock. This V-T mechanism relies primarily on the announcement of a new set of re-
strictions if the scallop stock deviates from the optimal level. These potential restrictions
include, on one hand, a moratorium followed by ITQ regulations and, on the other hand,
a tax on the annual profit obtained from harvesting at full capacity. The tax rate, as
outlined in Table 3, is dependent on the average time the regulator needs to implement
the policy. This announcement dissuades any deviation from the optimal conservation
target, ensuring voluntary compliance without the need to enforce the policy.

7The reader may be surprised by the absence of td in the integral; in fact, we have made a change of
variable given by x = t− td (see Appendix E)
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8. Concluding remarks

In this article, we have shown that an active fish stock conservation policy can be re-
placed by a V-T mechanism that avoids a significant portion of the regulatory costs. This
argument has been developed using a standard bio-economic model in the tradition of
Gordon-Schaefer. By assuming that the optimal level of conservation is achieved through
a mandatory regulatory policy, we have proposed replacing this costly policy with a V-T
mechanism, which is based on the announcement of a new mandatory policy if a decline in
fish stocks is observed. The primary goal of this announcement is to discourage any devi-
ation from the harvesting effort trajectory that is compatible with optimal conservation.
This announced threat rests on two main pillars. The first restores and preserves the con-
servation level. It takes the form of a moratorium, coupled with financial compensation
to ensure acceptability, and is followed by a standard system of individual transferable
quotas. The second is designed to discourage any deviation from the optimal conservation
path. It consists of a tax on fishing capacity, which reduces the expected gain from any
deviation occurring during the period between detection and the policy’s implementation.
We have shown how this mechanism works and, in particular, how to set the capacity tax.
Finally, we have illustrated our argument using the case of scallop harvesting in the Bay
of Saint-Brieuc (France). In this example, we explicitly derive the tax rate and study its
relationship with the average delay in the policy’s implementation.

Nevertheless, several points in the argument are open to debate. The first concerns
the dynamic context of the game. By design, V-T mechanisms are intended to deter
any deviation from a chosen outcome. However, this requires knowledge of the deviator’s
expected payoff and, therefore, his conjecture about the behavior of opponents during
this period. In this paper, we made a specific choice. From the date of deviation until the
implementation of the mandatory policy, we introduce a Nash conjecture, which assumes
the deviator believes that the other players will remain compliant. However, once the
policy is implemented and becomes a collective punishment, we have assumed that the
deviator’s expected outcome aligns with the one obtained in a Nash equilibrium from that
date onward. This modeling choice clearly influences the setting of the capacity tax rate
and raises the question of what might happen if the deviator formulates more complex
conjectures. For example, the deviator could imagine that the other players will also
deviate, or, within the context of a sub-game perfect approach, he may only consider the
equilibrium gain obtained in the sub-game starting from that date. This question should
certainly be investigated, but perhaps not within the context of a Gordon-Schaefer model.
This leads to a second limitation of this paper. In essence, the Gordon-Schaefer model
is a competitive supply-side model with MRAP solutions due to the linearity of both the
instantaneous payoff and the dynamics with respect to effort. This raises the question
of whether and how a V-T mechanism can be implemented in models that incorporate
the demand side and/or imperfectly competitive behavior. For instance, this calls for the
use of ”great fish war” models in the Levhari and Mirman style [35], or their equivalent
in continuous time. Finally, it is also worth noting that most conservation models are
based on a single species. In fisheries, the primary objective is to preserve the resource
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to improve the welfare of its single predator: humans. However, species such as scallops
are also part of a global food chain that must be considered, for instance, within a prey-
predator approach.
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Appendix A. Proof of Proposition 1

The proof is based on Hartl and Feichtinger’s sufficient conditions [29], precisely, on Theorem 3.1 and
on Remark 4.3 for infinite horizon and catching up optimality. To adapt to their notations, we start by
writing the program (5) as follows:

max
Ṡ

∫ +∞

0

e−ρt
(
MFB(S) +NFB(S)Ṡ

)
dt (A.1)

s.t. Ṡ(t) ∈ [S(t) (r(S(t))− nq) , S(t)r(S(t))] (A.2)

with MFB(S) = π(S)Sr(S) and NFB(S) = −π(S) and introduce:

IFB(S) = −ρNFB(S)−M ′
FB(S) = (ρ− r′(S)S − r(S))π(S)− π′(S)Sr(S) (A.3)

(1) IFB(S) = 0 admits a unique solution SFB ∈ ]Smin,K[

Concerning existence, observe that:
(i) IFB(Smin) = −π′(Smin)Sminr(Smin) < 0 since π(Smin) = 0, r(Smin) > 0 and π′(Smin) > 0
(ii) IFB(K) = (ρ− r′(K)K)π(K) > 0 since π(K) > 0, r(K) = 0 and r′(K) < 0.

The continuity of IFB(S) then induces the existence of a solution, SFB ∈ [Smin,K] to IFB(S) = 0. We
also observe that SFB > Smin so that π

(
SFB

)
> 0

Uniqueness is achieved if (IFB)
′
(S) maintains its sign at each solution S0. To verify this point, observe

first that IFB(S) is also given by:

IFB(S) = π(S)
(
ρ− r′(S)S −

(
π′(S)S
π(S) + 1

)
r(S)

)
︸ ︷︷ ︸

=f(s)

(A.4)

Accordingly (IFB)
′
(S) = π′(S)f(S)+π(S)f ′(S). As this function is evaluated at a solution S0 for which

π (S0) > 0, it follows that f(S0) = 0 and that sign
(
(IFB)

′
(S0)

)
= sign (f ′(S0)). Moreover:

f ′(S0) = −r”(S0)S0 − r′(S0)
(

π′(S0)S0

π(S0)
+ 2
)
− r(S0)

π′(S0)
π(S0)

((
π”(S0)S0

π′(S0)
+ 1
)
− π′(S0)S0

π(S0)

)
(A.5)

and, from our assumptions, we know that for all S ∈ [Smin,K], r(S) ≥ 0, r′(S) < 0, r”(S) < 0,

π(S) ≥ 0, π′(S) > 0 and eπ′(S) = π”(S)S
π′(S) ≤ −1. So for each solution S0, (IFB)

′
(S0) > 0. This proves

uniqueness.

(2) ∀S ∈ [Smin,K] if S < SFB (resp. >) then IFB(S) < 0 (resp. >).

The result follows directly from (i), (ii) and uniqueness.
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(3) lim inft→+∞ e−ρt
∫ SFB

S(t)
NFB(s)ds ≥ 0 for a every feasible path (catching up optimality)

Using the non-negativity condition of the instantaneous profit, we can restrict the set of feasible paths
to those belonging to [Smin,K]. On this compact set, the quantity −π(S) is, by continuity, bounded.

Accordingly, any path S(t) ∈ [Smin,K] has the property that for any t > 0, the quantity
∫ SFB

S(t)
(−π(s)) ds

is also bounded. We can therefore claim that:

lim
t→+∞

e−ρt

∫ SFB

S(t)

(−π(s)) ds = 0 (A.6)

(4) Conclusion

Since (1), (2) and (3) are satisfied, it only remains to verify that the long-term path given by SFB(t) =

SFB and the related effort eFB = r(SFB)
nq ∈ (0, 1) are feasible, i.e, that it satisfies Eq.(A.2). As ṠFB(t) = 0,

this requires that 0 ∈
[
SFB

(
r(SFB)− nq

)
, SFBr(SFB)

]
. Clearly, SFBr(SFB) > 0. Moreover, since

SFB > Smin and r(S) decreases, we have r(SFB) < r(Smin). Finally, assuming endangered species,
r(Smin) < nq, we can assert that SFB

(
r(SFB)− nq

)
< 0.

Appendix B. Proof of Proposition 2

On the basis of our discussion in section 4, it still remains to show two points. First, we prove that
the equilibrium quota price, given by Eq.(19), is positive and identify the new lower bound, SITQ

min , on the
state variable induced by the new condition of non-negativity of profits. In a second step, we show that
(i) if the initial quotas are given by Eq.(18) and (ii) if the equilibrium market price is given by Eq.(19),
then each fishery, which solves the program (15) and conjectures that the other players are compliant,
chooses a MRAP strategy to reach the optimal conservation level. Since the IQT policy starts when the
fish stock reaches SFB , this shows that being compliant is a Nash equilibrium of the ITQ game.

Point 1: Quota price and profit non-negativity

(1) Positivity of the quota price

From Eq.(19), the equilibrium quota price is:

pω =
(n−1)(eπ(SFB)+1)r(SFB)π(SFB)

nρ−r(SFB)−nSFBr′(SFB)
(B.1)

The numerator of this expression is strictly positive since r(SFB) > 0, π(SFB) > 0 and eπ(S
FB) =

π′(SFB)SFB

π(SFB)
> 0. Concerning the denominator, observe that:

D = nρ− r
(
SFB

)
− nSFBr′(SFB) > n

(
ρ− r

(
SFB

)
− SFBr′(SFB)

)
(B.2)

As IFB(S
FB) = 0, we know from Eq.(A.4) that:(

ρ− r(SFB)− r′(SFB)SFB
)
= π′(SFB)SFB

π(SFB)
r(SFB) (B.3)

so that D > nπ′(SFB)SFB

π(SFB)
r(SFB) > 0.

(2) Introduction of a new lower bound SITQ
min ∈

[
Smin, S

FB
]

A look at the program (15) shows that a positive effort now requires π(S) − pw > 0. This leads

to a new lower bound, SITQ
min , on the potential states targeted by a MRAP strategy. Since pi′(S) > 0

and pω > 0, it’s obvious that SITQ
min > Smin. To state that SITQ

min < SFB , we only have to check that
π(SFB)− pω > 0. If D > 0 denotes the denominator of pω (see Eq.(B.2)), we have:
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π(SFB)− pω = 1
D

(
Dπ(SFB)− (n− 1)

(
π′(SFB)SFB + π(SFB)

)
r(SFB)

)
= 1

D

(
n
(
ρ− r

(
SFB

)
− SFBr′(SFB)

)
π(SFB)− (n− 1)π′(SFB)SFBr(SFB)

)
> n

D

((
ρ− r

(
SFB

)
− SFBr′(SFB)

)
π(SFB)− π′(SFB)SFBr(SFB)

)
= 0 since IFB(S

FB) = 0 (see Eq.(A.3) (B.4)

Point 2: the MRAP result

We again use Hartl and Feichtinger’s sufficient conditions [29]. So let us write program (15) as:

max
Ṡ

∫ +∞

ti(t̃m)

e−ρt
(
MITQ(S) +NITQ(S)Ṡ

)
dt (B.5)

s.t. Ṡ(t) ∈
[
S(t)

(
r(S(t))− q − n−1

n r(SFB)
)
, S(t)

(
r(S(t))− n−1

n r(SFB)
)]

(B.6)

with: {
MITQ(S) = (π(S)− pω)S

(
r(S)− r(SFB)n−1

n

)
+ pωω − T

(
SFB , τx

)
NITQ(S) = − (π(S)− pω)

(B.7)

and let us introduce:

IITQ(S) = −ρNITQ(S)−M ′
ITQ(S)

= (π(S)− pω)
(
ρ−

(
r(S)− n−1

n r(SFB)
)
− Sr′(S)

)
− π′(S)S

(
r(S)− n−1

n r(SFB)
)

(B.8)

(1) IITQ(S) = 0 admits a unique solution SITQ = SFB ∈
]
SITQ
min ,K

[
The existence of a solution is not really a problem, since the price pomega is designed to implement

the optimal conservation level SFB . To verify this point, observe that IITQ(S) can be written as follows:

IITQ(S) =

 (π(S) (ρ− r(S)− Sr′(S))− π′(S)Sr(S))︸ ︷︷ ︸
=IFB(S)

. . .

− 1
n

(
pω
(
nρ− nr(S) + r(SFB) (n− 1)− nSr′(S)

)
− (n− 1) (eπ(S) + 1)π(S)r(SFB)

)


(B.9)

Recall that pω =
(n−1)(eπ(SFB)+1)r(SFB)π(SFB)

nρ−r(SFB)−nSFBr′(SFB)
and observe by computation that IITQ(S

FB) = IFB(S
FB).

It follows that SFB is a solution of IITQ(S) = 0.

For uniqueness, we check again that Iprime
ITQ (S) has the same sign at each solution S0. From Eq.(B.8),

we see that IITQ(S) can be expressed as follows:

IITQ(S) = (π(S)− pω)
(
ρ− (tfracπ′(S)Sπ(S)− pω + 1)

(
r(S)− n−1

n r(SFB)
)
− Sr′(S)

)︸ ︷︷ ︸
=g(S)

(B.10)

Since the solutions, S0, are such that π(S0)− pω > 0, we can assert, with the same argument as in point
(1) of Appendix A, that sign

(
(IITQ)

′
(S0)

)
= sign (g′(S0)). Furthermore, by calculation, we obtain :
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g′(S0) = −r”(S0)S0︸ ︷︷ ︸
>0

−
(

π′(S0)S0

π(S0)−pω
+ 2
)
r′(S0)︸ ︷︷ ︸

>0

−
(
r(S0)− n−1

n r(SFB)
) π′(S0)

π(S0)−pω

(
(eπ′(S0) + 1)− π′(S0)S0

(π(S0)−pω)

)
︸ ︷︷ ︸

<0

(B.11)

Since we have assumed that r′(S) < 0, r”(S) < 0, pi′(S) > 0, and eπ′(S) < −1, and we know that
π(S0)− pω > 0, the terms above the various braces in Eq.(B.11) are signed. If r(S0)− n−1

n r(SFB) > 0,

we can say that g′(S0) > 0, hence (IITQ)
′
(S0) > 0. To verify this last point, let us return to Eq.(B.10)

and observe that :

IITQ(S0) = 0 ⇔ r(S0)− n−1
n r∗(SFB) =

(
π′(S0)S0

π(S0)−pω
+ 1
)−1

(ρ− S0r
′(S0)) (B.12)

Under our assumptions, the right-hand side of Eq.(B.12) is positive, and therefore r(S0)− n−1
n r(SFB) > 0.

(2) ∀S ∈
[
SITQ
min ,K

]
if S < SFB (resp. >) then IITQ(S) < 0 (resp. >).

Since SFB is the only solution of the continuous function IITQ(S) = 0, we just need to evaluate
this function at a point smaller (resp. larger) than SFB to know its sign. From Eq.(B.8), it remains to
observe that :

(i) IITQ

(
SITQ
min

)
= −π′

(
SITQ
min

)
SITQ
min

(
r
(
SITQ
min

)
− r(SFB)n−1

n

)
because π(SITQ

min ) − pω = 0. More-

over since r′ (S) < 0 and SITQ
min < SFB , we have r

(
SITQ
min

)
> r(SFB). Finally using r′ (S) < 0, we

conclude that IITQ

(
SITQ
min

)
< 0

(ii) IITQ (K) = (π(K)− pω)
(
ρ+ r∗(SFB)n−1

n −Kr′(K)
)
+ π′(K)Kr(SFB)n−1

n because r(K) = 0.
Moreover by construction (π(K)− pω) > 0. Finally since r′(K) < 0 and π′(K) < 0, we conclude that
IITQ (K) > 0.

(3) lim inft→+∞ e−ρt
∫ SFB

S(t)
NITQ(s)ds ≥ 0 for a every feasible path (catching up optimality)

Let us first observe that we can, by the the non-negativity condition of the instantaneous profit,

restrict the set a feasible paths to those belonging to
[
SITQ
min ,K

]
. On this compact set, the quan-

tity −π(S) is, by continuity, bounded. It follows that any path S(t) ∈
[
SITQ
min ,K

]
has the prop-

erty that for any t > 0, the quantity
∫ SFB

S(t)
(−π(s)) ds is also bounded. We can therefore claim that

limt→+∞ e−ρt
∫ SFB

S(t)
(−π(s)) ds = 0.

(4) Conclusion

As for point (4) of Appendix A, it remains to check that the long-term constant path is feasible,

i.e, fulfills Eq.(B.6). This condition is now given by 0 ∈
[
SFB

(
r(SFB)

n − q
)
, SFB r(SFB)

n

]
and is satisfied

since eFB = r(SFB)
nq ∈ (0, 1) (see Appendix A) which implies that

(
r(SFB)

n − q
)
< 0.

Appendix C. Proof of proposition 3

To study the program (22), let us start by writing it in the manner of Hartl and Feichtinger [29]. We
obtain :
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max
Ṡ

∫ +∞

td

e−ρt
(
Md(S(t), t) +Nd(S(t), t)Ṡ(t)

)
dt (C.1)

s.t. Ṡ(t) ∈
[
S(t)

(
r(S(t))− q − (n−1)

n r(SFB)
)
, S(t)

(
r(S(t))− (n−1)

n r(SFB)
)]

(C.2)

with {
Md(S, t) = π(S)S

(
r(S)− n−1

n r(SFB)
)
(1− F (t, td)) + vr (τx, td)F (t, td)

Nd(S, t) = −π(S) (1− F (t, td))
(C.3)

It follows that:

Id (S, t) = −ρNd(S, t) + ∂tNd(S, t)− ∂SMd(S, t) (C.4)

Since F (t, td) = 1− e−δ(t−td), an exercise of computation leads to:

Id (S, t) = e−δ(t−td)
((
ρ+ δ − r(S) + n−1

n r(SFB)− Sr′(S)
)
π(S)− π′(S)S

(
r(S)− n−1

n r(SFB)
))︸ ︷︷ ︸

=Id(S)

(C.5)

This last equation clearly suggests that even if the problem is not homogeneous, the singular stock
remains time-independent.Moreover, as in Appendix A and Appendix B, points (1) to (3) can be proved
to be valid. However, we will be unable to conclude because the path induced by the singular stock
may be infeasible, i.e, does not verify Eq.(C.2). To overcome this problem, we first identify a necessary
and sufficient condition for feasibility and apply Hartl and Feichtinger’s result. In the case in which
this condition is not fulfilled, we make a guess about the solution and verify that this one satisfies the
sufficiency conditions for optimality. But let us first verify points (1) to (3).

(1) Id(S) = 0 admits a unique solution Sd ∈
]
Smin, S

FB
[

Concerning existence, notice that:
(i) Id(Smin) = −π′(Smin)Smin

(
r(Smin)− n−1

n r(SFB)
)
since π(Smin) = 0. From point (1) of Appendix

A, we also know that Smin < SFB , thus r(Smin) > r(SFB) because r′(S) < 0. It follows that Id(Smin) < 0.
(ii) By the definition of SFB (see Eq.(B.3)), Id(S

FB) becomes:

Id(S
FB) =

(
δ + n−1

n r(SFB)
)
π(SFB) + π′(SFB)SFB n−1

n r(SFB) (C.6)

Since π(SFB) > 0 and π′(S) > 0, it follows that Id(S
FB) > 0

Finally continuity of Id(S) ensure the existence of Sd ∈
]
Smin, S

FB
[
such that Id(S

d) = 0.
Let us now move to the uniqueness part. As in point (1) of Appendix A, we will show that I ′d(S)

maintains its sign at each solution. But let us first notice that Id(S) can be written as follows:

Id(S) = π(S)
(
ρ+ δ − (eπ(S) + 1)

(
r(S)− n−1

n r(SFB)
)
− Sr′(S)

)︸ ︷︷ ︸
h(S)

(C.7)

where eπ(S) denotes the elasticity of π(S). It follows that for any solution of Id(S0) = 0, sign (I ′d(S0)) =
sign (h′(S0)). Moreover by computation, we get :

h′(S0) = −S0r”(S0)− r′(S0) (eπ(S0) + 2)− (eπ(S0))
′ (
r(S0)− n−1

n r(SFB)
)

(C.8)

Since r′(S), r”(S) < 0 and π′(S) > 0, the two first terms of this expression are positive. Concerning the
last one, let us first observe, since eπ′(S) < −1, that:

(eπ(S0))
′
= π′(S0)

π(S0)

(
(eπ′(S0) + 1)− π′(S0)S0

π(S0)

)
< 0 (C.9)
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Since the solution S0 < SFB and r′(S) < 0,
(
r(S0)− n−1

n r(SFB)
)
> 0. It follows that I ′d(S0) > 0 at each

solution.

(2) ∀S ∈ [Smin,K] if S < Sd (resp. >) then Id(S) < 0 (resp. >).

From the existence part of (1), it is immediate that this property holds on
[
Smin, S

FB
]
. The open

question is its extension on
]
SFB ,K

]
. So let us observe by Eqs.(A.3) and (C.5) that:

Id (S) = IFB(S) +
(
δ + n−1

n r(SFB)π(S) + π′(S)n−1
n r(SFB)

)︸ ︷︷ ︸
>0

(C.10)

Moreover from point (2) of Appendix A, we know that ∀S ∈
]
SFB ,K

]
, IFB(S) > 0, hence Id (S) > 0.

(3) lim inft→+∞ e−ρt
∫ SFB

S(t)
Nd(s, t)ds ≥ 0 for a every feasible path (catching up optimality)

The proof is similar to point (3) of Appendix Appendix A. The only difference is that Nd(s, t) =
−π(S) (1− F (t, td)). But (1− F (t, td)) ∈ [0, 1] and is therefore bounded.

We now reach the question of the feasibility of a MRAP. This one is given by a harvest at
capacity followed by a switch to ed given by Eq.(27) when the stock Sd is met. Since the stock remains
constant after this switching time, the feasibility condition (Eq.(C.2)) requires that:

0 ∈
[
Sd
(
r(Sd)− q − (n−1)

n r(SFB)
)
, Sd

(
r(Sd)− (n−1)

n r(SFB)
)]

(C.11)

Since Sd < SFB by point (1) and r′(S) > 0, it is immediate that the upper bound of this interval is always
positive. Nothing can however be said about the lower bound. Two cases must therefore be considerate.

Case 1 : r
(
Sd
)
− (n−1)

n r(SFB) ≤ q
In this case, the lower bound is negative and we can use Hartl and Feichtinger’s result to conclude

that the MRAP is the optimal solution.

Case 2 : r
(
Sd
)
− (n−1)

n r(SFB) > q
To study this case, let us consider the path Sd(t) corresponding to a harvest at capacity, e(t) = 1,

over the whole horizon starting at td. This one solves:

Ṡ(t) = S(t)
(
r(S(t))− q − (n−1)

n r(SFB)
)

with S(td) = SFB (C.12)

Let us now verify that this path is a solution to program (C.1). To set up the problem, let us denote
by S(t) any feasible path satisfying Eq.(C.2) and let us write by J (S (·) , T ), the value reached by the
objective until time T > td. If

∮
S
stands for the line integral along the curve S, J (S (·) , T ) is given by:

J (S (·) , T ) =
∮
S
e−ρt (Md(S, t)dt+Nd(S, t)dS) (C.13)

If we prove that:

lim
T→+∞

inf ∆(T ) = lim
T→+∞

inf
(
J
(
Sd (·) , T

)
− J (S (·) , T )

)
≥ 0 (C.14)

we can conclude that Sd(t) is an optimal path for the infinite horizon problem (in the sense of catching
up optimality).

From Anaya et al. ([2] remark 2.1), we know that Sd(t) is the lowest bound of all feasible paths
starting at S(td) = SFB . This means that if we consider the restriction of a feasible path S(·) ̸= Sd(·) on
[td, T ], either S(t) > Sd(t) on an open sub-interval of [tdev, T ] or S(t) > S̄dev(t) for (t′, T ] (see Fig.C.2).
So even if the configuration ABA can occur several time, we can say, from the properties of the line
integral, that ∆(T ) is typically of the form of:
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Figure C.2: Paths of Sd(t) and S(t)

∆(T ) =
(∮

ABA
e−ρt (Md(S, t)dt+Nd(S, t)dS)

)
+
(∮

CDEC
e−ρt (Md(S, t)dt+Nd(S, t)) dS

)
(C.15)

−
(∮

DE
e−ρt (M(S, t)dt+N(S, t)dS)

)
Moreover by Green’s theorem, we know that:

{ ∮
ABA

e−ρt (Md(S, t)dt+Nd(S, t)dS) =
∫∫

D1

(
∂
∂t (e

−ρtNd(S, t))− ∂
∂S (e−ρtMd(S, t))

)
dSdt∮

CDEC
e−ρt (Md(S, t)dt+Nd(S, t)) dS =

∫∫
D2

(
∂
∂t (e

−ρtNd(S, t))− ∂
∂S (e−ρtMd(S, t))

)
dSdt

(C.16)

Now observe that:

∂
∂t

(
e−ρtNd(S, t)

)
− ∂

∂S

(
e−ρtMd(S, t)

)
= e−ρt (−ρNd(S, t) + ∂tNd(S, t)− ∂SMd(S, t))

= e−ρtId (S, t) (see Eq.(C.4)) (C.17)

Since any feasible path, never reaches Sd and, by the choice of the initial condition, lies above Sd, we
can say from point (2) of this appendix that:

∂
∂t

(
e−ρtNd(S, t)

)
− ∂

∂S

(
e−ρtMd(S, t)

)
≥ 0 (C.18)

As a consequence, the two line integrals given in Eq.(C.16) are non-negative. If we now move to Eq.(C.15)
and observe (see fig.C.2) that in the third line integral dt = 0, we can say that:

∆(T ) ≥ −

(
e−ρT

∫ S(T )

Sd(T )

N(S, T )dS

)
(C.19)

It follows from point (3) of this appendix that limT→+∞ inf ∆(T ) ≥ 0. We can therefore conclude that
Sd(t) is a solution of the infinite horizon problem (C.1) in the sense of catching up optimality.

Appendix D. Proof of proposition 4

Let us verify that τ∗x ≤ ρ
δ

(
1− r(SFB)

nq

)
. We know that:

∀td ≥ 0, τx(td) =
ρ
δ

(∫ +∞

td

(ρ+ δ)e−(ρ+δ)(t−td)
[
π(SD(t,td))S

D(t,td)
π(SFB)SFB eD(t)

]
dt− r(SFB)

qn

)
(D.1)
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Moreover, under our assumption, π(S)S increases and ∀td and ∀t ≥ td, S
D(t, td) ≤ SFB . This implies

that π(SD(t,td))S
D(t,td)

π(SFB)SFB ≤ 1. As eD(t) ∈ [01]. W can therefore say that:

∀td ≥ 0, τx(td) ≤ ρ
δ

(∫ +∞

td

(ρ+ δ)e−(ρ+δ)(t−td)dt− r(SFB)
qn

)
(D.2)

Finally, observe that,
∫ +∞
td

(ρ+ δ)e−(ρ+δ)(t−td)dt = 1. It follows that:

∀td ≥ 0, τx(td) ≤ ρ
δ

(
1− r(SFB)

nq

)
(D.3)

Appendix E. Some complements on the numerical illustration

In this example the growth rate of the biomass and the unit profit per harvest given by r(S) = r(1− S
K )

and π(S) = (p− c
qS ) and the values of the parameters are those described in Table 1. The computations

are done with Matlab8

The optimal conservation level: From Eq.(8), the optimal conservation level solves:

ρπ(S) = π′(S)r(S)S + π(S)r′(S)S + π(S)r(S)

⇔ ρ(p− c
qS )−

c
qS2 r(1− S

K ) + (p− c
qS )

r
KS − (p− c

qS )r(1−
S
K ) = 0 (E.1)

By using the data of table 1, we get:

1
S

(
0.0479S2 − 1217.3S − 80420

)
= 0 (E.2)

It follows that the optimal conservation level is of SFB ≃ 25503 tons. From this quantity, we deduce the
individual optimal effort given by :

eFB = r(SFB)
nq = r

nq

(
1− SFB

K

)
≃ 0.4646 (E.3)

As well as growth rate of the biomass and the unit profit per harvest, respectively given by:

r(SFB) = 0.649(1− SFB

54252 ) ≃ 0.3439 and π(SFB) = (2000− 1.6028·106
SFB ) ≃ 1937.15 (E.4)

The other quantities of table 1 are obtained by a combination these quantities.

The behavior of the deviator : targeted stock Sd(δ) and dynamics of SD(t, td) From Eq.(C.5), we know

that the singular stock, Sd(δ), solves, for each δ, Id(S, δ) = 0. However to know the harvesting strategy
(see proposition 3), we have to check if this stock is or not reachable in finite time. To answer this
question, recall, from the uniqueness part of point (1) of Appendix C, that ∂SId(S, δ)|S=Sd(δ) > 0 and

observe that ∂δId(S, δ) = π(S) > 0 for S = Sd(δ). It follows that
(
Sd
)′
(δ) < 0. Since r′(S) < 0, we

can say that if r
(
Sd(0)

)
− (n−1)

n r(SFB) > q this inequality holds for all δ ≥ 0, in other words if Sd(0) is
not reachable, the same remains true for Sd(δ) independently of δ. This is the case in our example. By
solving Id(S, 0) = 0, we get Sd(0) = 11268. and we observe that:

r(Sd(0))− (n−1)
n r(SFB) = 0.1717 > q = 0.002961 (E.5)

8Codes are available upon request.
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Hence, any fishery which leaves the compliance path at time td plans to fish, independently of δ, at
full capacity, i.e. eD(t) = 1 for t ≥ td. The dynamics of SD(t, td) induced by Eq.(23) is therefore given
by:

ṠD(t)
SD(t)

= r(SD(t))−
(
q + (n−1)

n r(SFB)
)
, SD(td) = SFB (E.6)

⇔ ṠD(t)
SD(t)

= − r
K︸︷︷︸

=a

SD(t) +
(
r − q − (n−1)

n r(SFB)
)

︸ ︷︷ ︸
=b

, SD(td) = SFB (E.7)

By the usual change of variable, given by u(t) = 1
SD(t)

, we get the linear differential equation u̇(t) =

−bu(t) + a, with u(td) =
1

SFB , whose solution is:

u(t, td) =
(

1
SFB − a

b

)
e−b(t−td) + a

b (E.8)

It follows that SD(t, td) = (u(t, td))
−1

and, by using the data set, we get:

SD(t, td) ≃
(
−2.0482 · 10−7e−0.3035(t−td) + 3.9417 · 10−5

)−1

(E.9)

The computation of Vd(τx, td, δ)
From Eq.(31), we know that:

Vd(τx, td, δ) =

∫ +∞

td

e−(ρ+δ)t+δtd
[
π(SD(t, td))S

D(t, td)q
]
dt+ vR(τx)

δ
ρ(ρ+δ)e

−ρtd

= e−ρtd

(
pq

∫ +∞

td

e−(ρ+δ)(t−td)SD(t, td)dt− c

∫ +∞

td

e−(ρ+δ)(t−td)dt+ vR(τx)
δ

ρ(ρ+δ)

)
= e−ρtd

(
pq

∫ +∞

td

e−(ρ+δ)(t−td)SD(t, td)dt− c
ρ+δ + vR(τx)

δ
ρ(ρ+δ)

)
(E.10)

We even observe from Eq.E.9 that SD(t, td) is a function of x = t− td. It follows that:

Vd(τx, td, δ) = e−ρtd

(
pq

∫ +∞

0

e−(ρ+δ)xSD(x)dx− c
ρ+δ + vR(τx)

δ
ρ(ρ+δ)

)
(E.11)

If we finally use our data set, and the characterization of vR(τx) and SD(x) (see respectively Eq.( 38)
and Eq.(E.9)), we obtain:

Vd(τx, td, δ) ≃ e−0.05td

(∫ +∞

0

5.922e−(0.05+δ)x·105
−2.0482·10−2e−0.3035x+3.9417dx+ δ(67962−146280τx)−237.3

0.05(0.05+δ)

)
(E.12)

The choice of the tax rate τx(δ)

Let us first observe from Eq.(E.11), that ∂tdVd(τx, td, δ) < 0. So, if a deviation occurs, it takes place
at td = 0. It follows by Eqs.(38), (32), that the optimal tax rate, τx(δ), as a function of the delay 1/δ
solves Cpl(0)− Vd(τx, 0, δ) = 0.That is:
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π(SFB)SFBr(SFB)

ρn −
(
pq

∫ +∞

0

e−(ρ+δ)xSD(x)dx− c
ρ+δ +

(
r(SFB)

n − qτx

)
tfracπ(SFB)SFBδρ(ρ+ δ)

)
= 0

(E.13)

⇔ π(SFB)SFBr(SFB)

n(ρ+δ) − pq

∫ +∞

0

e−(ρ+δ)xSD(x)dx+ c
(ρ+δ) +

π(SFB)SFBδ
ρ(ρ+δ) qτx = 0 (E.14)

⇔ τx(δ) =
pρ(ρ+δ)

π(SFB)SFBδ

∫ +∞

0

e−(ρ+δ)xSD(x)dx− 1
δ

(
cρ

π(SFB)SFBq
+ r(SFB)ρ

nq

)
(E.15)

If we now use the data set and the definition of SD(x) (see Eq.(E.9)), we get :

τ∗(δ) ≃ (5+100δ)
δ

∫ +∞

0

e−(0.05+δ)x

−10.1188e−0.3035x+1.9473·103 dx− 0.0249
δ (E.16)

the function which was used to compute results of Table 3.
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