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Abstract We propose a new correlation measure for functionally correlated
variables based on local linear dependence. It is able to detect non-linear,
non-monotonic and even implicit relationships. Applying the classical linear
correlation in a local framework combined with tools from Principal Compo-
nents Analysis the statistic is capable of detecting very complex dependences
among the data. In a first part we prove that it meets the properties of inde-
pendence, similarity invariance and dependence and the axiom of continuity.
In a second part we run a numerical simulation over a variety of dependences
and compare it to other dependence measures in the literature. The results
indicate that we outperform existing coefficients. We also show better stability
and robustness to noise.
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1 Introduction

Assessing statistical dependence among variables has been a major subject for
a long time. Strongly related to regression problems, correlation can be used to
understand the relationship between numerical variables. Even though corre-
lation coeflicients are basic statistics in regression analysis, they are still useful
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in summarizing lots of informations contained in the data. First introduced
by Pearson (Pearson, 1895) the product-moment correlation coefficient is still
a very popular tool in statistics however it is limited to linear correlations.
Through the years it has been improved in many ways. Former improvements
were to detect monotonic correlations. The two most common monotonic coef-
ficients are Spearman’s p, (Spearman, 1904) and Kendall’s 7 (Kendall, 1938).
They use ranks instead of the raw variables giving them the ability to mea-
sure a monotonic link between two variables. Both of them can be consid-
ered as special cases of a more general correlation coefficient latter proposed
by Daniels (1944). Hoeffding’s d (Hoeffding, 1948) was a successful attempt
of non-monotonic correlation coefficients. Major drawbacks of this one arise
from its sensitivity to noisy variables and its lack of interpretation as it belongs
to [f%; 1], 1 standing for complete dependence. It is not the only non-linear
correlation coeflicient, in his Analysis Of Variance (ANOVA), Pearson intro-
duced the correlation ratio, described in Saporta (2006)!. It can be seen as
the maximal correlation between X and the denoised variable Y. More recent
developments deal with non-linear dependence. Even if it is not in the scope of
this paper one should notice that most of them apply in multivariate settings.
Bach and Jordan (2002) and Akaho (2006) developed the Kernel Canonical
Correlation Analysis (KCCA) based on Reproducing Kernel Hilbert Spaces
(RHKS) using kernel methods for generalizing the simple linear covariance.
The idea of using RHKS is not new, it was already proposed in Grindea and
Postelnicu (1977) for the General Coeflicient (GC) but they did not explain
how to estimate the transformations in the RHKS. Solutions for computing
this coeflicient with splines instead of kernels can be found in Hall and Miller
(2009). Székely et al. (2007) proposed the Distance Correlation (DC) which
uses correlation on Euclidean distances instead of ranks or raw variables. Nat-
urally DC can be extended to more general distances (Lyons, 2013). Another
coefficient is the Maximal Information Coefficient (MIC) of Reshef et al. (2011)
that uses mutual information (MI), closely related to entropy in information
theory.

There exists also tests for nonlinear independence from which the statistic
assessing the correlation may not be easily compared between each other. We
can cite the Hilbert-Schmidt Independence Criterion (HSIC) of Gretton et al.
(2005, 2007) based on RHKS in the same spirit as KCCA, the Continuous
ANOVA (CANOVA) of Wang et al. (2015) based on local permutations and the
Maximal Local Correlation (MLC) of Chen et al. (2010). This is closely linked
to our method since it uses local information in the form of local correlation
integrals as defined in Grassberger and Procaccia (1983). His drawback is that
their coefficient does not lie in a specific range. These methods are related
to non-linear correlation, a comparison showing equivalences between DC and
HSIC can be found in Sejdinovic et al. (2013). We do not include these methods
in our simulation as they do not produce genuine correlation coefficients. In
their paper, Chen et al. (2010) compare the MLC to this kind of measures on

1 See pages 82-83
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the ground of false positive rates making it more like a test for independence
than a genuine coefficient. For that same reason we do not include MLC as well.
In the end we will compare to classical coefficients: Pearson’s p, Spearman’s
ps and Kendall’s 7, and to a panel of non-linear coefficients most widely used
in practice: Hoeffding’s d, Correlation Ratio n, DC, KCCA and MIC. For the
sake of simplicity we do not include marginal variations of these coefficients
existing in the literature.

In this paper, we extend the concept of correlation into a new framework
to estimate non-monotonic and possibly more general functional relationships
such as a circle or any implicit dependence. Our new method is aimed at
detecting any statistical dependence between two variables. It is based on two
separate statistics: the local correlation from a local sample and a sparsity
measure using the concepts in Principal Component Analysis first introduced
by Pearson (1901).

2 New Method

If there exists a non-trivial dependence between two variables X and Y it is
hard to detect it globally (in the whole sample) as it can be any implicit de-
pendence. Since any continuous function can be approximated using an affine
function in the neighbourhood of a given point, measuring an unknown rela-
tionship can be achieved as a local linear approximation. We also benefit from
local neighbours? in an unsupervised manner to allow for a broader class of
dependencies rather than just functional relationships.

2.1 Lambda measure

As it was said we will be measuring correlation locally in the sample. The sim-
pler way to summarize information about the local correlations is to average
them. Our measure does not rely on a particular coefficient, any of the men-
tioned in the previous section can be used. The most simple is to use the linear
correlation coefficient. This one lies in the range [—1; 1] so we take its absolute
value to avoid symmetry effects. We define the average local correlation as:

PUXY) = = 3 (NP V) (1

with p; p, the correlation coefficient in the sub-sample of (X,Y’), defined by a
circle of radius h around the considered point P;(X;,Y;):

Nu(Pi(Xi,Y:)) = {P(X,Y) | d(P;(X;,Y:), P(X,Y)) < h}

2 Closely related to k-nearest neighbours.
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where d(-) is a distance metric.3.

One can note that the statistic A\ is a measure of the goodness of fit
of the local approximation of the conditional mean of the data generating
process. It will be close to 1 when there is a noise-free dependence, providing
h was optimally set. The sequence of p;; contains the information of local
linearities and is directly related with a piecewise linear approximation of the
true dependence (in the general case, intimately related with the projection
on the class of piecewise linear functions). The average local correlation has
the ability to look for non-monotonic dependence on its own, but in order to
be more robust to noisy data it has to be improved.

2.2 Sparsity measure

The noise-to-signal ratio is higher in local samples than in the whole sample so
we overcome this issue by introducing a second measure. Principal Component
Analysis Pearson (1901), hereafter PCA, provides a solution to measure the
signal-to-noise ratio with different clues and interpretations. We use the singu-
lar value decomposition (SVD) of the covariance matrix C(X,Y) to extract all
lower dimensional representation of the data as well as the variances of each
of these representations. The lower dimensional planes are computed by pro-
jecting the data on the eigenvectors V while the variances are contained in the
eigenvalues L. From these matrices we can compute the matrix of ”Squared
Loadings” A which contains the information on the direction and the variance
of the projection.

C = VLV’
A = (VL'/?)?

If the data are independent, which is equivalent to an equal distribution in
the 2 dimensions, then each component has the same relative importance. If
the data lie on a lower dimensional space, such as a line, the last component will
have a small eigenvalue. Square loadings describe the information of the linear
compression of the dataset. In the 2-dimensional case, it is very straightforward
to see that the first component will measure the signal and the second will
measure the noise, under the assumption that h is optimally chosen. Let A(®) be
local ”squared loadings” matrix computed in the local sub-sample around the
it" observation. It is natural to consider as a measure of the relative importance
of the second component with respect to the first one the statistic:

2 .
XA
Sl,h - 2 (t)

Zj:l A],l

3 The distances are computed on standardized variables to avoid scale effects. In our
simulations we will use the Euclidean distance.
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The sequence of s; j, is a numerical indicator containing information about the
noise in the data that we can average just as we did with the previous one:

1 n
Sh(X, Y) = Ezsi’h (2)
=1

Even for a non optimal choice of h, which might result in measuring the

opposite direction, s, € [0, 1] because the first component always attests to
the most variance along its direction whichever it is. This ensures our final
statistic to be bounded in [0, 1].
What is useful is that the behaviour of s, is anti-correlated with the one of
Ap- More exactly, for a strong dependency between X and Y we have \j, — 1
and s, — 0, and respectively for independence (or a weak dependency) A\, —
0 and s, — 1. So to improve on efficiency and stability we combine p and s
into the local linear dependence measure:

An = (pn)™"

This value will approach 1 faster and so reveal stronger dependency sooner
than the average local correlation p itself and still remains 0 when the data
are independent. Other combinations of p and s could have been employed,
but we stick to this one because of its performance.

2.3 Dependence Measures Axioms

Correlation coefficients can come in very different forms as it has been men-
tioned in the introduction. For instance some like the HSIC, CANOVA, MLC
are not upper bounded. Some may take negative values like the Pearson’s p,
Spearman’s ps; and Kendall’'s 7. This kind of properties are very crucial as it
can change or limit their interpretation. The question of what is the system of
exhaustive desirable properties of dependence measures has been studied by
Rényi (1959). We recall his set of axioms in the same way Moéri and Székely
(2018) did:

(A) Existence: M(X,Y") is defined for all non-constant random variables X
and Y.

(B) Symmetry: M(X,Y) = M(X,Y).

(C) Boundedness: 0 < IM(X,Y)| < 1.

(D) Independence: M(X,Y) =0 if and only if X and Y are independent.

(E) Strict Dependence: M(X,Y) =1 X and Y (X =g(Y) or Y = f(X),

where g(z) and f(z) are Borel measurable functions)

(F) Invariance: If the Borel measurable functions f(z) and g(z) map the real
axis in a one-to-one way onto itself, M(f(X),g(Y)) = M(X,Y).

(G) Gaussian Case: If the joint distribution of X and Y is normal, then M(X,Y") =
|p(X,Y)| where p(X,Y) is the correlation coefficient of X and Y.
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Because of its structure our statistic inherits many properties from the
Pearson’s p coefficient. And on the other hand, it is not affected by the PCA
component in a way that contradicts these axioms. For the first set of axioms:
using PCA does not affect symmetry (B). The combination of p and s ensures
boundedness between 0 and 1 (C). One can note that axiom (D) is violated by
coeflicients that do not detect non-linear dependence. For example Pearson’s p
does not respect the ”only if” in case of a quadratic dependence on a symmetric
support. Axiom (G) is satisfied only by p alone. So in the end we satisfy axioms

(A)-(B)-(C)-(D)-(E).
Proposition 1 X satisfies azioms (A)-(B)-(C)-(D)-(E).

Proof Let pp(X,Y) defined as in equation 1 and s,(X,Y’) as in equation 2.

(A) For any pair (X,Y’) non-constant for which the covariance matrix C(X,Y")
exists pp(X,Y) and s, (X,Y) are well defined and so is Ap.

(B) Given the symmetry of the covariance and of the distance both pp,(X,Y)
and sp(X,Y) are symmetric and so is Ap.

(C) By Schwarz inequality we have |p; | < 1 and so its average pj,(X,Y"). This
ensures 0 < \p(X,Y) < 1.

(D) Independence of (X,Y) is equivalent to local independence of (X;,Y;).
MX)Y) =0 pp(X,)Y) =0 < |pin(X;,Y;)|] = 0Vi =1,...,n. This
implies either local independence inside each Nj(P;) which concludes the
proof. Or local symmetry in each Nj,(P;) which is impossible because it
would be broken through translation.

(E) M(X,Y) =14 pp(X,)Y) =1or sp(X,Y) =0. And pp(X,)Y) =1 &
lpin(X:,Y;)| = 1 Vi = 1,...,n. This implies that there is a perfect local
linear correlation in each Np(P;) which is equivalent with a local linear
approximation of the function defining the dependence.

Even if this system of axioms may be considered as exhaustive for char-
acterizing a dependence measure, and it exists at least one measure verifying
all these axioms, i.e. the maximal correlation measure (Renyi, 1959), one may
ask some complementary question about defining a ”minimalist” system of
axioms that we can expect to be satisfied by all acceptable dependency mea-
sures. More recently Méri and Székely (2018) who also developed the Distance
Correlation (DC) formulated a set of four axioms for which dependence mea-
sures should be in line with. In their paper, they investigated to which extent
Pearson’s p, Spearman’s p,, Kendall’s 7, Correlation Ratio n, DC and MIC fit
these axioms. For the ease of discussion, we recall them here as they did:

(i) Independence: M(X,Y) = 0 if and only if X and Y are independent.

(ii) Similarity Invariance: M(X,Y’) is invariant with respect to all similarity
transformations of the Hilbert space denoted H; that is M(LX, MY) =
M(X,Y) where L, M are similarity transformations of H.

(iii) Similarity Dependence: M(X,Y) = 1 if and only if Y = LX with proba-
bility 1, where L is a similarity transformation of H.
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(iv) Continuity: M(X,Y) is continuous; that is, if (X,,Y,) € S,n = 1,2,.
such that for some positive constant K we have E(|X,|? +|Y,|?) < K,n =
1,2,... and (X,,Y,) converges weakly (in distribution) to (X,Y) then

M(X,,Y,) = M(X,Y).

In their paper, they insist on (iv), concerning the weak continuity of the
dependence measure. Not fulfilling this axiom means that as the sample size
increases the empirical values of a dependence measure do not necessarily
converge to the population value. And in order to justify the introduction
of these new axioms, they show that maximal correlation measure does not
satisfy (iv).

For the second set of axioms, one may note that the absolute value p and
so pp, to verify all the four previous axioms. More precisely, (i) is equivalent
to (D). Just as DC we did not fulfil axiom (F) but a restricted version that
is axiom (ii). The main difference is that the dependence measure has to stay
the same under one-to-one transformations as long as they preserve distances.
(iii) is a restricted version of (E). So we satisfy axioms (i)-(ii)-(iii)- (iv).

Proposition 2 X satisfies axioms (i)-(ii)-(iii)-(1v).
Proof Let pr(X,Y) defined as in equation 1 and s,(X,Y’) as in equation 2.

(i) Equivalent to axiom (D).

(ii) Similarity invariance preserves distances so p(X,Y) and sp(X,Y") remain
unchanged.

(iii) Restricted version of (E).

(iv) Since Pearson’s p is a bilinear application we have pp(X,Y’) absolutely
continuous so we only need to prove the continuity for sp(X,Y). Dauxois
et al. (1982) proved that if (X,,Y;) converges weakly (in distribution)
to (X,Y) then eigenvectors V,, and eigenvalues L, converge to V and
L respectively. Since sp is a continuous function of these quantities the
continuity is guaranteed for s, (X,,Y;) and so for Ap(X,,Y,).

Moéri and Székely (2018) shows that DC measure satisfies all these axioms
too. The other ones fail for at least one of the axioms. MIC violates (iii)
if the cumulative distribution function of X is not continuous and (iv) is not
satisfied and Correlation Ratio n violates (i), (ii) and (iii) (see Méri and Székely
(2018)). As it will be highlighted in section 3 of this paper, DC detects less the
dependence between independent random variables, as opposed for example
to MIC and KCCA (DC’s extension).

These theoretical axioms alone are not sufficient to assess a dependence
measure behaviour. Numerical simulations will complete this analysis in some
empirical cases that were not considered here, e.g. circular dependence.
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3 Simulation Study
3.1 Design

A numerical simulation is conducted to assess the behaviour of the new statis-
tic in finite sample. We compute the mentionned coefficients under different
dependences among the data following the methodology in Chen et al. (2010)
and Wang et al. (2015).

The simulation is made with n = 300 observations?, X ~ i.i.d. U([0,1]) and
a Gaussian noise € ~ i.i.d. N'(0,0). We compare the correlation measures for
various scenarios.?. Results of the simulations are reported in Table 1.

The simulation study is conducted over 7 different models:

— Linear fi(x) =2+ 0.8z

— Non-Continuous fa(x) = (0.52)L,<0.5 + (—0.5 4+ 0.52)1;>0.5

— Monotonic fa(z) = 7102

— Quadratic fa(z) = 4(x — 0.5)2

— Non-Monotonic f5(x) = 6z — 8log(1+ ) + 2e~50(==03)* 4 6 —100(z—0.8)*
— Non-Functional fg(z) = —22 +1

— Independence  fr(x) = 0.6

3.2 Results

***% INSERT TABLE 1 HERE ***

First of all it is important to note that among the 10 coefficients Ay, is
always in the top 3. Moreover it is the only one to always be on top. This
means that our new statistic is the only measure able to detect dependence
correctly in all considered cases.

First, in the noiseless cases (o = 0.0) we expect to measure the real abilities
of the correlation coefficients and this is almost what one observes. In the first
row we see that under a linear model all coefficients were able to measure
perfect correlation, except n for which it is known the kernel regression can
misfits the linear functions. For the non-continuous case it is important to
note that the monotonic coefficients p, ps and 7 detected negative correlation
while the simulated model is a clearly positive dependence. It denotes the risk
of using these coeflicients as well as interpreting their signs without a deeper
investigation of the data. This is a not a problem with non-linear coefficient
ranging from 0 to 1. Under models f3 to f5 both A and MIC detect the perfect
dependence. It is more surprising that KCCA (resp. 0.87 and 0.54) and DC
(resp. 0.74 and 0.46) perform less in cases of non-continuity (f2) and high

4 Results for n = 500 can be found in Appendix A Table 2.
5 These are illustrated in Appendix B Figure 2
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non-linearities (f5). Things become more complicated in the case of implicit
dependence (fg). MIC (0.67) and DC (0.20) do not manage to characterize
a perfect dependence while KCCA (0.99) and A (1.00) still perform well. We
omit model f; because most of the coefficients are not defined for constant
variables.

For the noisy cases (¢ = 0.1), more related to realistic data, we find similar
behaviours. As expected linear and monotonic coefficients namely p, ps and 7
are not able to detect dependences beyond their respective scopes. We notice
that Spearman’s py is more efficient than Kendall’s 7 in models f; to f3. Non-
linear coefficients have heterogeneous performances depending on the type of
dependence. Hoeffding’s d is very sensitive to the noise. Previously it only
managed to find perfect dependence (1.00) in cases f; and fs, but now it
decreased to 0.51 and 0.46 respectively. It has still very low values for all other
cases. DC is powerful in monotonic cases, and surprisingly good in the non-
continuous model f5, having almost the same performance as A\. However it
underperforms at detecting non-monotonic dependences. KCCA and MIC are
strong competitors in this setting. The only important thing to notice is that
KCCA fails at the non-continuous case (f2) as well as MIC fails at the non-
functional one (fg) whereas \’s performance remained constant throughout all
the cases. One can notice that the performance of p has sharply decreased as it
was expected. The need for the PCA based correction s is clearly highlighted
here. It makes the coefficient robust to the locally amplified noise and allows
to detect dependences correctly.

When the signal-to-noise ratio is much lower (¢ = 0.3), as it is often the
case in empirical work, we observe more clearly the robustness to noise of
KCCA and X as opposed to DC and MIC. It is also important to focus on the
case of independence (f7) DC, KCCA and MIC all found quite high values
(resp. 0.09, 0.15, 0.20) and this was also true before (for o = 0.1, resp. 0.14,
0.18, 0.23). This is a major drawback because one would not distinguish be-
tween independence and low signal. Nevertheless even if n and A coefficients
have reasonably low values (resp. 0.03 and 0.08) best ones are Pearson’s p and
Hoeffding’s d (resp. —0.01 and 0.00).

Second, we also compare our new statistic to Pearson’s p, DC, KCCA and
MIC in Figure 1 (for n =300, o = 0.1) and Figure 3 (for n = 300 , o = 0.3).
We repeated the simulation for a given model 20 times to obtain a cloud of
points. If the cloud lies on the 45° line then A is equal to the other measure.
If the cloud lies above this line then our statistic is greater.

*#* INSERT FIGURE 1 HERE ***

Figure 1 (a) shows the behaviour of A against the Pearson’s p. We see that
for the linear case (f1) and the independence case (f7) we are close to the 45°
line. It is a desirable property that in appropriate circumstances A reduces to
p. The slight bias arises because of the PCA component of the statistic that
implies A > p. The most interesting cases are the ones for which Pearson’s
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p is almost zero whereas A did measure the dependence (vertical line). The
circular model (fs) produces a perfect symmetry so Pearson’s p is zero in
average while X is almost 1. This is also true for the quadratic model (f;).
The very non-linear model (f5) has a slight negative trend so Pearson’s p is
around —0.1 while in fact the dependence is much stronger, this is reflected in
A. In the case of the non-continuous piecewise model (f2) the Pearson’s p is
completely misleading, it measures a negative and relatively weak correlation.
On the contrary A has high values indicating a relatively strong dependence.

It was expected that A would perform better than Pearson’s p in non-
linear cases, but it is also interesting to know how we perform in contrast to
non-linear dependence measures. As we have seen in Table 1 the overall per-
formance of n and Hoeffding’s d is quite poor so it is not useful to compare to
them. On the contrary MIC, KCCA and even DC were quite good competitors
in certain circumstances.

Figure 1 (b) shows values for A against DC. In monotonic cases (f; and f3)
both are quite high and close to each other. For independence ( f7) DC is higher
in average which means \ detects independence better. In Appendix B Figure
3 (b) one can note that DC do not distinguish between independence and the
non-continuous model (fz). DC detects non-linear dependence in models fy
and f; but A has greater values. DC fails completely at detecting dependence
for the circular model (fs).

Figure 1 (c) shows values for A against KCCA. Both are very close ex-
cept for the piecewise model (f3) and the very non-linear model (f5) where
A outperforms KCCA. For the independence case (f7) KCCA is greater than
A in average meaning KCCA detects more dependence than A when there is
none. When the proportion of noise is increased (see Appendix B Figure 3
(¢)) KCCA values dramatically decrease and A outperforms in all cases. This
means that our statistic is more robust to the noise than KCCA is.

Figure 1 (d) shows values for A against MIC. We can observe horizontal
clouds of points for models f1, f2, f3, f4 and fg showing that there is a great
variance in MIC, on the contrary A shows a better stability. As it was true for
other measures A is always greater or equal to MIC. The latter has also a too
large value for independence, even more than preceding measures. Moreover
MIC is less robust to the noise, when the noise variance is increased its values
decrease even more than for KCCA (see Appendix B Figure 3 (d)).

4 Summary and Concluding Remarks

The local linear dependence measure (denoted \) presented here has proven
to be able to measure (implicit) functional dependences and to be robust to
noisy samples. The new statistic A inherits linear properties of Pearson’s p and
extends them into a local framework allowing for approximation of any clas-
sical or implicit dependence. On the theoretical side our statistic satisfies the
desirable properties of dependence measures as defined in Méri and Székely
(2018). On the empirical side we compare to historical correlation measures



Local Linear Dependence Measure for Functionally Correlated Variables

11

such as Pearson’s p, Spearman’s ps; and Kendall’s 7. We found that it can
detect dependence where these ones cannot and performs as best under ap-
propriate cases. We also compare to non-linear coefficients such as Hoeffding’s
d, Correlation Ratio 7, Distance Correlation (DC), Kernel Canonical Corre-
lation Analysis (KCCA) and Maximum Information Coefficient (MIC). We
found that it outperforms them under a variety of models and is much more
robust in presence of noise in the data than them.

Table 1: Simulation for different dependences and different levels of noise

Functions p Ps T d n DC KCCA MIC Ph An
c=20.0
y=fi(z)+e 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00
y= fa(z) +e —0.51 —0.50 0.00 0.06 0.50 0.74 0.87 1.00 0.98 1.00
y=f3(z)+e —0.91 -1.00 -1.00 1.00 0.84 0.94 0.99 1.00 0.98 1.00
= fa(z) + € —0.07 —0.08 —0.06 0.25 0.56 0.49 1.00 1.00 0.98 1.00
y=fs(z)+e —0.11 —0.04 —0.01 0.09 0.36 0.46 0.54 1.00 0.80 0.91
y? = fo(x) +e¢ 0.01 0.00 0.00 0.06 0.00 0.20 0.99 0.67 0.96 1.00
o=0.1
y=fi(z)+e 0.93 0.92 0.77 0.51 0.76 0.92 0.93 0.82 0.76 0.94
y = fa(x) + € —0.45 —0.46 —0.22 0.03 0.41 0.60 0.53 0.71 0.45 0.73
= f3(z) + € —0.88 —0.87 —0.70 0.46 0.77 0.90 0.96 0.83 0.51 0.88
= fa(z) + € 0.02 0.05 0.03 0.13 0.52 0.46 0.95 0.77 0.57 0.83
y=fs(z)+e —0.11 —0.02 —0.01 0.07 0.35 0.48 0.52 0.91 0.45 0.85
y? = fe(x) + € 0.02 0.02 0.01 0.04 0.00 0.21 0.93 0.55 0.67 0.96
y=fr(z) +e -0.03 —0.04 -0.02 0.00 0.05 0.14 0.18 0.23 0.04 0.07
=203
y=fi(z)+e 0.64 0.65 0.46 0.15 0.37 0.60 0.65 0.53 0.41 0.69
y= fao(x) +e —0.23 —0.21 —0.13 0.02 0.12 0.31 0.29 0.30 0.15 0.30
y=fa(z)+e —0.71 -0.73 —0.53 0.22 0.53 0.71 0.80 0.57 0.48 0.73
= fa(z) + € —0.05 —0.03 —0.02 0.04 0.34 0.38 0.74 0.47 0.37 0.72
y=fs(z)+e —0.08 —0.03 —0.01 0.04 0.28 0.35 0.38 0.60 0.25 0.83
y? = fo(x) + e 0.00 0.00 0.00 0.01 0.01 0.17 0.68 0.30 0.43 0.80
y=fr(z) +e -0.01 —0.04 —0.04 0.00 0.03 0.09 0.15 0.20 0.05 0.08

Bold values indicates the three best coefficients, or best ones if there are tied values.

Values for h are optimally set via grid search.
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Fig. 1: X against other measures (n = 300 and o = 0.1)
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Appendix A Supplementary Tables

Table 2: Simulation for different dependences (n = 500)

Functions p Ps T d n DC KCCA MIC Ph An
c=20.0
y=fi(z)+e 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00
y= fa(z) +e —0.51 —0.50 0.00 0.06 0.54 0.73 0.86 1.00 1.00 1.00
y=f3(z)+e —0.91 -1.00 -1.00 1.00 0.88 0.94 0.99 1.00 0.99 1.00
= fa(z) + € —0.10 —0.03 0.01 0.25 0.66 0.50 1.00 1.00 0.97 1.00
y=fs(z)+e —0.16 —0.03 0.01 0.10 0.47 0.47 0.53 1.00 0.79 0.92
y? = fo(x) +e¢ 0.03 0.02 0.00 0.06 0.00 0.21 0.99 0.64 0.96 1.00
o=0.1
y=fi(z)+e 0.91 0.92 0.75 0.48 0.74 0.90 0.91 0.82 0.88 0.99
y = fa(x) + € —0.43 —0.46 —0.23 0.04 0.34 0.55 0.47 0.66 0.40 0.77
= f3(z) + € —0.86 —0.82 —0.65 0.40 0.82 0.88 0.96 0.84 0.82 0.98
= fa(z) + € —0.03 —0.01 —0.01 0.13 0.62 0.49 0.95 0.89 0.63 0.83
y=fs(z)+e —0.14 —0.05 —0.01 0.06 0.36 0.42 0.47 0.88 0.44 0.83
y? = fe(x) + € —0.01 —0.01 0.00 0.03 0.00 0.19 0.91 0.55 0.68 0.97
y=fr(z) +e —0.08 —0.09 —0.06 0.00 0.01 0.12 0.13 0.21 0.04 0.08
=203
y=fi(z)+e 0.64 0.63 0.45 0.14 0.35 0.60 0.64 0.39 0.53 0.83
y= fao(x) +e —0.21 —0.22 —0.14 0.02 0.11 0.26 0.23 0.26 0.23 0.47
y=fa(z)+e -0.68 —0.66 —0.47 0.17 0.50 0.68 0.79 0.49 0.58 0.87
= fa(z) + € 0.00 —0.01 0.00 0.05 0.35 0.36 0.73 0.44 0.37 0.70
y=fs(z)+e —0.14 —0.08 —0.04 0.04 0.38 0.39 0.38 0.69 0.26 0.84
y? = fo(x) + e 0.00 0.00 0.00 0.01 0.00 0.15 0.64 0.29 0.46 0.83
y=fr(z) +e 0.02 0.02 0.01 0.00 0.00 0.05 0.06 0.18 0.02 0.04

Bold values indicates the three best coefficients, or best ones if there are tied values.
Values for h are optimally set via grid search.
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Appendix B Supplementary Figures

Fig. 2: Simulated Cases with increasing noises level €(o)
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Fig. 3: X\ against other measures (n = 300 and o = 0.3)
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