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Abstract

This paper examines an endogenous growth model that allows us to consider the

dynamics and sustainability of debt, pollution, and growth. Debt evolves according to

the financing adaptation and mitigation efforts and to the damages caused by pollution.

Three types of features are important for our analysis: The technology through the

negative effect of pollution on TFP; The fiscal policy; The initial level of pollution

and debt with respect to capital. Indeed, if the initial level of pollution is too high,

the economy is relegated to an endogenous tipping zone where pollution perpetually

increases relatively to capital. If the effect of pollution on TFP is too strong, the

economy cannot converge to a stable and sustainable long-run balanced growth path.

If the income tax rates are high enough, we can converge to a stable balanced growth

path with low pollution and high debt relative to capital. This sustainable equilibrium

can even be characterized by higher growth and welfare. This last result underlines

the role that tax policy can play in reconciling debt and environmental sustainability.
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France. E-mail: mouez.fodha@univ-paris1.fr.
§Corresponding author. Aix Marseille Univ, CNRS, AMSE, Marseille, France. 5-9 Boulevard Bourdet, CS 50498,

13205 Marseille Cedex 1, France. E-mail: thomas.seegmuller@univ-amu.fr.

1



1 Introduction

In the context of growing public debt and rising costs related to global pollution, it is

crucial to have a clear understanding of the interplay between debt and global pollution

dynamics. Today, several countries that are particularly vulnerable to the impacts of

climate change also find themselves burdened with high levels of debt. The economic

repercussions of the COVID-19 pandemic further exacerbated this situation (see e.g Di-

bley et al., 2021). This issue is widely brought up for developing countries,1 but is also

a major concern for developed countries. Indeed, since 2008, we have observed in all

groups of countries an increasing trend in the share of debt in GDP (Figure 1).

Figure 1: Evolution of the central government debt to GDP ratio by groups of countries

(World Bank classification in 2023). IMF Global Debt Database.

Concerning expenses related to global pollution, in addition to the substantial invest-

ments linked to the transition to a less polluting economy, the expenses associated with

adaptation are expected to grow in all countries (IPCC, 2022). Meanwhile, the connec-

tions between public debt and global environmental challenges can be illustrated by the

1In December 2023, among 67 low-income countries, the Debt Sustainability Analysis provided by the

World Bank Group and the IMF identified 28 countries with a high risk of overall debt distress and 11

countries already in distress. This worrisome observation is coupled with the increase in the frequency

and intensity of extreme weather events in these vulnerable countries.
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positive and substantial impacts of climate vulnerability on debt (Buhr et al., 2018),

suggesting the existence of a detrimental cycle wherein vulnerability perpetuates itself

through public debt management. Moreover, the rise in disaster-related losses will result

in reduced tax revenues. Zenios (2024) gives an overview of the direct and indirect chan-

nels and suggests a possible doom loop between climate change and sovereign debt. We

consider in this paper these different dimensions to examine the interplay between debt

and pollution dynamics.

As reported by IMF (2023), policymakers face a fundamental trade-off. On the one

hand, relying on spending-based measures to achieve emission goals and to adapt could

lead to a substantial increase in public debt. On the other hand, limited environmental

action exposes the world to adverse consequences from global pollution, increasing the

cost of adaptation. The recent proposals from the European Commission regarding new

economic governance rules highlight the interconnected nature of questions surrounding

fiscal sustainability and environmental concerns. In particular, the Commission considers

climate change as a structural trend representing a challenge to the financial stability

of Member States’ public finances.2 The Pisani-Ferry and Mahfouz (2023) report is in

line with this argument. In the case of France, it recommends using debt to finance the

investments needed for the ecological transition. The use of debt should be limited to

“green” investments that have a positive impact on the climate and generate long-term

economic returns. This policy must be accompanied by more progressive taxation.

This paper contributes to this debate. Within an endogenous growth framework, we

study the dynamic path of pollution, debt, and economic growth when public authorities

finance mitigation and adaptation to tackle the damages caused by the pollution stock.

From a normative perspective, we look at how fiscal and environmental policy instruments

can be used to guarantee sustainability and improve welfare.

We develop an overlapping generations (OLG) model where debt, pollution, and

growth are endogenous. Households live for two periods and save through two assets,

capital, the source of growth, and public debt. The government issues debt securities

because taxes on capital and labor incomes do not cover public expenses for pollution

mitigation and adaptation, and the service of past debt. The pollution stock evolves

2See https://ec.europa.eu/commission/presscorner/detail/en/ip_23_2393.
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with production activity and mitigation measures, and is a source of damage by reducing

aggregate productivity (TFP). Technology plays an important role: The final good is

produced using an AK-type production function to have a simple engine of growth, but

considering that the adaptation policy of the government can dampen the negative effect

of pollution on TFP.

The long-run equilibria analysis shows that two balanced growth paths (BGPs) may

exist, defined by constant ratios of debt and pollution over capital. One is characterized

by a low pollution-to-capital ratio and a high debt-to-capital ratio while the reverse is

observed for the other. When TFP vulnerability to pollution is not too high, the growth

rate is higher at the BGP with low pollution and high debt, which also means higher

welfare at this BGP. In that case, the higher long-term growth rate is at the expense of

a high level of debt per unit of capital. This suggests a crowding-in effect of debt on

growth.

The analysis of dynamics allows us to show that depending on fiscal policy, the TFP

vulnerability to pollution, and initial conditions of capital, debt, and pollution stocks,

the economy either converges to the BGP with low pollution over capital, collapses, or

experiences a perpetual increase in pollution over capital. More precisely, we show that

the BGP with a high pollution-to-capital ratio is not sustainable, as the economy cannot

converge to this state, while the convergence to the BGP with low pollution-to-capital

may be possible for a sufficiently high labor taxation and a reasonable TFP vulnerability

to pollution. We identify an extreme case in which sustainability is completely excluded.

None of the two BGPs is stable and the economy either collapses or is characterized by

a perpetual increase of pollution over capital. This unfavorable situation occurs when

the tax rates on labor and capital income are low and TFP vulnerability to pollution is

high.

If the BGP with high pollution over capital is the only unstable one, it is a saddle

toward which the stock variables cannot converge. Therefore, the stable manifold of

this equilibrium defines an endogenous tipping zone (ETZ). If the initial conditions on

debt, pollution, and capital are such that the economy is in this zone, the dynamics

of pollution relative to capital explode. Interestingly, the higher the debt relative to

pollution, the easier the economy can be relegated to the ETZ. It corresponds to a form
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of debt vulnerability: Higher debt favors unsustainable dynamic paths for pollution.

Finally, in the case of a long-run sustainability, we investigate if the policy can still

improve welfare. Therefore, we analyze the effect of the fiscal policy, mitigation and

adaptation on the level of the stable BGP. When TFP vulnerability to pollution is not

excessive, increasing taxation enhances welfare along the stable BGP, while the effects of

environmental policy instruments depend greatly on their efficiency. Insufficiently effi-

cient mitigation in reducing pollution may worsen the pollution-to-capital ratio, whereas

adaptation improves welfare only if TFP responds strongly to such expenditure. In

general, this analysis shows the crucial role played by adaptation.

Previous contributions studied the macroeconomic implications of the interplay be-

tween public debt and environmental factors (Heijdra et al., 2006; Fodha and Seegmuller,

2012, 2014). Nonetheless, debt is often considered as an exogenous instrument, and its

dynamic evolution of financing adaptation and mitigation together with the dynamic

path of pollution is left aside, meaning that the question of sustainability is not properly

addressed. In Baret and Menuet (2024), debt allows financing mitigation expenditure.

However, this paper cannot address the question of sustainability by assuming a constant

long-term debt-to-output ratio and a stabilizing rule ensuring convergence towards this

objective. Moreover, they leave aside adaptation expenditures while they must be signif-

icantly integrated into environmental spending. We go one step further by developing a

model that incorporates endogenous public debt dynamics and acknowledges the impact

of environmental issues on fiscal sustainability. This dimension seems essential to address

the economic consequences of global pollution and highlights how it exerts its influence

on sovereign debt. Our paper is related to some recent papers that consider endogenous

public debt and its dynamics. For example, Boly et al. (2022) examine the relationship

between public and environmental debt. We depart from this paper focusing on fiscal

sustainability and considering the economic damage entailed by pollution stock and its

impact on debt. Catalano et al. (2020) examine the role of fiscal policy in climate change

adaptation. They use a calibrated macroeconomic model of an open economy, that does

not allow them to explicitly identify the interplay between debt dynamics, growth, and

the environment. More generally, and in contrast to the literature that assumes limits

on long-term public debt (Baret and Menuet, 2024; Boly et al., 2022; Seghini and Dées,
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2024), we do not impose any restrictions on sovereign debt. This is crucial for studying

environment-debt interactions and sustainability.

The rest of this paper is organized as follows. Section 2 presents an OLG model

in which pollution is proportional to capital stock, and the government issues debt and

imposes taxes on capital and labor incomes for financing adaptation and mitigation

expenditures. Section 3 defines the equilibrium. Section 4 studies the balanced growth

paths and examines the existence and multiplicity of BGPs. Section 5 considers the

dynamics and the possibility of an endogenous tipping zone. Section 6 presents some

policy implications. The final section provides the conclusion.

2 The model

We consider a dynamic model with pollution and three types of agents, firms, consumers,

and a government. Time is discrete, t = 0, 1, ...,+∞, and there is no uncertainty.

2.1 Production

We consider an AK model of economic growth in which TFP decreases with pollution

stock.3 Considering that pollution or climate change is detrimental to production is par-

ticularly relevant in addressing debt and environmental issues, as it allows to focus on

funding adaptation efforts, extending beyond mere mitigation. The need for adaptation

strategies will increase with the intensification of climate change impacts. These adap-

tations come with associated costs, such as building infrastructure to protect against

rising sea levels or creating drought-resistant agriculture. Public action can provide the

necessary financial resources to implement these adaptation measures, reducing the vul-

nerability of countries to environmental shocks. We thus assume that the capacity for

adaptation reduces the incremental damage caused by pollution stock. This ability to

adapt is ensured by the public authorities, who devote an amount G1t, specifically for

3Burke et al. (2015) finds a nonlinear decline in macroeconomic productivity following a change in

temperature, across sectors, in 166 rich and poor countries since the 1960s. This finding is confirmed

by Kalkuhl and Wenz (2020) which looks at the effects of rising global mean surface temperature on

production.
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this purpose.4

Therefore, the production is given by:

Yt = A

(
G1t

Pt

)
Kα
t (K̄tLt)

1−α (1)

with K̄ the aggregate level of capital, α ∈ (0, 1) and:

Assumption 1 A(X) is a strictly increasing function, with A(0) = A0 ⩾ 0, A(+∞) =

A1 < +∞, and A′(X)X/A(X) ∈ (0, 1).

This last assumption implies an elasticity of production to the adaptation to pollution

ratio lower than one. When the adaptation to pollution ratio goes up it causes a less-

than-proportional increase in productivity.

Note that A(X) may capture the fact that climate change destroys a part of aggregate

output at each period (Golosov et al., 2014; Dietz and Stern, 2015). It can also represent

the health effects of global pollution stock or the impacts of a change in temperature,

which results in reduced aggregate productivity (Dasgupta et al., 2021; Burke et al.,

2015).

Example: we can consider the following specifications for A(X):

A(X) =
A1X

1 +X
(2)

with A(0) = 0. This function is increasing and concave, with:

A′(X)X

A(X)
=

1

1 +X
∈ (0, 1) (3)

Let rt be the interest rate and wt the wage. At equilibrium, we have K̄t = Kt and

assuming that the population in this economy is equal to one, labor input is Lt = 1.

4Adaptation is formalized as a flow, that reduces the damage of pollution stock. This implies that

adaptation expenses are recurrent during each period. Considering that adaptation is infrastructure,

this means that we assume a perfect depreciation of such infrastructure at each period. This appears

consistent in our OLG model, where one period represents around 35 years. In this time perspective, we

suppose that changing climatic conditions necessitate ongoing adjustments, updates, or improvements.
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Therefore, profit maximization gives:

rt = αA

(
G1t

Pt

)
(4)

wt = (1− α)A

(
G1t

Pt

)
Kt (5)

Returns of factor being a positive function of productivity, they decrease with pollution.

2.2 Pollution

The stock of pollution increases with the emission flow and partly leaves the atmosphere

through a natural process in a share 0 < m < 1. Emission flow is assumed to be

proportional to the stock of capital. Mitigation measures G2t are implemented by public

authorities to enhance the sinks of emissions. The stock of pollution evolves according

to:

Pt+1 = (1−m)Pt − ψG2t + µKt (6)

The parameter ψ > 0 captures the efficiency of public abatement and µ > 0 pollution

flow resulting from capital stock. This stock of pollution only affects the real side of the

economy through its negative effect on the TFP. We will not consider a direct negative

effect of pollution on households welfare.

2.3 Government

We consider public actions to tackle environmental issues. Public spending Gt linearly

increases with GDP:

Gt = gYt (7)

and are divided into public spending which attenuates the effect of pollution on produc-

tion G1t, i.e. adaptation to climate effect, and mitigation G2t:

Git = giYt (8)

for i = 1, 2, with g1 + g2 = g.

Environmental policy instruments consist of public spending on both mitigation and

adaptation. While most of the literature has focused on their potential substitutability,
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these two strategies are now seen as simultaneously needed in the face of climate emer-

gencies. This need is reflected in international ambitions to achieve a balance in climate

finance spending between the two strategies (Sadler et al., 2024).

Since we are in an endogenous growth framework, we assume that the government

determines its public spending for adaptation and mitigation by fixing their amount per

GDP unit. This means that the policy of adaptation will be determined by g1 and the

policy of mitigation by g2. Of course, g2 could be considered as not too high, because

it is more realistic to assume that a country cannot strongly affect the global stock of

pollution through its own policy of mitigation.

To finance these spending, the government collects taxes on labor and capital incomes,

τL and τK , and issues debt Bt. Therefore, its expenditures include repayment of debt

and interest payments. The government faces the following budget constraint at each

period:

RbtBt +Gt = Bt+1 + τLwt + τKrtKt (9)

with Rbt the interest factor of debt and B0 > 0 the initial stock of debt. We are in an

economy with a positive initial stock of public debt. The different policy parameters

as well as the interest factor of debt and the income will determine how public debt

evolves through time. We will precisely study the interplay between debt accumulation,

dynamics of pollution stock, and growth.

2.4 Consumers

Consumers are in overlapping generations. The population size of each generation is

constant and normalized to one. Each consumer lives for two periods, consumes in both

periods, and saves through two assets, public debt and capital. Capital depreciates at

rate δ ∈ (0, 1), meaning that return on capital is given by 1− δ + (1− τK)rt.

The utility function of the generation born in t is given by:

U(ct, dt+1) =

(
c
σ−1
σ

t + βd
σ−1
σ

t+1

) σ
σ−1

(10)

with β ∈ (0, 1) and σ > 1. This last assumption ensures intertemporal substitutability,

which will imply a saving rate increasing in the return of assets. The household maximizes
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his utility under the two budget constraints:

ct +Kt+1 +Bt+1 = (1− τL)wt (11)

dt+1 = [1− δ + (1− τK)rt+1]Kt+1 +Rbt+1Bt+1 (12)

Since bonds and capital assets are perfect substitutes, they provide the same return:

1− δ + (1− τK)rt+1 = Rbt+1 ≡ Rt+1 (13)

Optimal choices give the saving function:

Kt+1 +Bt+1 =
βσRσ−1

t+1

1 + βσRσ−1
t+1

(1− τL)wt (14)

which is increasing in Rt+1 because σ > 1, and is in accordance with a saving function

increasing in the interest factor of assets.

3 Equilibrium

We define an equilibrium as a function of capital, debt, and pollution stocks. Market

clearing is obtained substituting (4), (5) and (13) in (6), (9) and (14). We get the

following functions:

Kt+1 +Bt+1 =
βσRσ−1

t+1

1 + βσRσ−1
t+1

(1− τL)(1− α)A

(
G1t

Pt

)
Kt (15)

Bt+1 = RtBt + gA

(
G1t

Pt

)
Kt − (τL(1− α) + τKα)A

(
G1t

Pt

)
Kt (16)

Pt+1 = (1−m)Pt − ψg2A

(
G1t

Pt

)
Kt + µKt (17)

We introduce the following variables to conduct our analysis: The growth factor

γt+1 ≡ Kt+1/Kt, debt per unit of capital bt ≡ Bt/Kt, and pollution per unit of capital

πt ≡ Pt/Kt. Using the government budget (8), public adaptation per unit of capital can

thus be written as a function of πt:

G1t

Pt
=
g1
πt
A

(
G1t

Pt

)
(18)

SinceA′(x)x/A(x) ∈ (0, 1), this equation implicitly defines a decreasing functionG1t/Pt =

ε(πt) if limx→0A(x)/x > πt/g1.
5 Using Assumption 1 and equation (18), we further have

5Note that it is always satisfied if A(0) > 0. If A(0) = 0, the condition is equivalent to limx→0 A
′(x) >

πt/g1.
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ε(0) = +∞ and ε(+∞) = 0. As pollution per unit of capital increases, the amount of

public spending dedicated to addressing pollution-related issues for each unit of pollution

decreases. Because of the productivity cost entailed by pollution, the higher the pollution

per unit of capital, the lower the resources that can be allocated to adaptation. This may

be counteracted if the government decides to allocate a larger proportion of its budget

to climate adaptation efforts, i.e if g1 increases.

The total factor productivity can thus be expressed as a function of pollution per

capital. We have A(G1t/Pt) = A[ε(πt)] ≡ a(πt), with a′(πt) < 0, a(0) = A[ε(0)] =

A(+∞) = A1, and a(+∞) = A[ε(+∞)] = A(0) = A0. Similarly, the interest factor can

be written as Rt+1 = 1− δ + (1− τK)αa(πt+1) ≡ R(πt+1), with R
′(πt+1) < 0.

Example (continued): considering our example given by equation (2), we have ε(πt) =

g1A1/πt − 1, which implies that:

a(πt) = A1 −
πt
g1

(19)

which requires that πt < g1A1.

Now, we can rewrite the dynamic system (15)-(17) as follows:

γt+1 + bt+1γt+1 = Σ(πt+1)(1− τL)(1− α)a(πt) (20)

bt+1γt+1 = R(πt)bt + ga(πt)− (τL(1− α) + τKα)a(πt) (21)

πt+1γt+1 = (1−m)πt − ψg2a(πt) + µ (22)

with Σ(πt+1) ≡ βσR(πt+1)σ−1

1+βσR(πt+1)σ−1 the saving rate characterized by Σ′(πt+1) < 0 because

σ > 1. Saving falls with π because the interest rate is reduced by pollution per unit of

capital.

Rearranging equations (20)-(22), we finally obtain:

γt+1 = a(πt)

[
Σ(πt+1)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(πt)

a(πt)
bt

]
(23)

bt+1 =

R(πt)
a(πt)

bt + g − (τL(1− α) + τKα)

Σ(πt+1)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(πt)
a(πt)

bt
(24)

πt+1 =
(1−m) πt

a(πt)
− ψg2 +

µ
a(πt)

Σ(πt+1)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(πt)
a(πt)

bt
(25)
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Equations (24) and (25) give the dynamics of (bt, πt) for t ≥ 0, taking into account that

both bt and πt are predetermined variables. The dynamics of debt per capital is coupled

with the dynamics of pollution per unit of capital for two reasons. First, because the

depreciation of capital is not complete. This implies that the cost of capital falls with

productivity loss but not in the same proportion as growth
(
R(πt)
a(πt)

still depends on πt

)
.

Second, because saving rate increases with productivity, a factor that is diminished by

pollution per unit of capital.

The value of the growth factor γt is deduced from these two variables using equation

(23). To conduct our analysis, we focus on relevant situations in which the growth

factor, debt per unit of capital, and pollution per unit of capital are all positive. To

ensure γt+1 > 0, bt+1 > 0 and πt+1 > 0, we assume a primary deficit and the following

restrictions:

Σ(πt+1)(1− τL)(1− α) >
R(πt)

a(πt)
bt + g − (τL(1− α) + τKα)

µ > a(πt)ψg2

They are satisfied under the next assumption:

Assumption 2

bt <
a(+∞)

R(+∞)
[Σ(+∞)(1− τL)(1− α)− g + τL(1− α) + τKα]

g > τL(1− α) + τKα

µ > a(0)ψg2

The first inequality characterizes an upper bound for public debt, which increases

with the amount of savings and decreases with the primary deficit, the second a primary

deficit, and the third emission intensity per unit of capital higher than the efficiency of

pollution abatement.

Lemma 1 Let us note ϵa(πt) ≡ a′(πt)πt/a(πt) < 0. Under Assumption 2, |ϵa(πt)| not

infinite and σ close to 1, we get:

γt+1 = f1(bt, πt) (26)

bt+1 = f2(bt, πt) (27)

πt+1 = f3(bt, πt) (28)
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where f3(bt, πt) and f2(bt, πt) are increasing with respect to bt and πt, and f1(bt, πt)

decreasing with respect to bt and πt. Equations (27) and (28) determine the dynamics of

(bt, πt) for all t ≥ 0, while the growth factor is given by (26).

Proof. See Appendix A.

4 Balanced growth paths: multiplicity and main features

We focus here on long-run equilibria. We first show the existence and multiplicity of

BGPs. Then, we investigate the main features of these equilibria. We will in particular

understand how they are ranked according to the levels of debt per capital, pollution per

capital, and growth.

4.1 Existence and multiplicity of BGPs

Along a balanced growth path, capital, debt, and pollution grow at a constant rate γ−1.

A balanced growth path is thus characterized by bt = bt+1 = b and πt = πt+1 = π solving

(27) and (28). Hence, it is a stationary solution (b, π) to:

b =

R(π)
a(π) b+ g − (τL(1− α) + τKα)

Σ(π)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(π)
a(π) b

(29)

π =
(1−m) π

a(π) − ψg2 +
µ

a(π)

Σ(π)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(π)
a(π) b

(30)

Given such a solution, the growth factor corresponds to:

γ = a(π)

[
Σ(π)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(π)

a(π)
b

]
(31)

The ratio of (29) and (30) gives:

b =
g − (τL(1− α) + τKα)
1−m−R(π)

a(π) − ψg2
π + µ

a(π)π

(32)

Using (13), it is equivalent to:

b =
a(π)π[g − (τL(1− α) + τKα)]

π(δ −m)− (1− τK)αa(π)π − ψg2a(π) + µ
=

g − τL(1− α)− τKα

X(π)− 1−δ
a(π) − (1− τK)α

≡ B1(π)

(33)
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with X(π) ≡ 1−m
a(π) − ψg2

π + µ
a(π)π .

Moreover, (30) can be rewritten as:

b =
a(π)

R(π)
[Σ(π)(1− τL)(1− α) + τL(1− α) + τKα− g −X(π)]

≡ B2(π) (34)

In the following, we assume:

Assumption 3 δ ≥ m, ϵa(π) < −1 and finite, σ higher but close to 1.

The first part of the assumption implies that the rate of pollution absorption is lower

than the depreciation rate of capital. This is consistent in our context, as pollution stock

can refer to greenhouse gases whose some will remain in the atmosphere for thousands of

years. The second part of the assumption implies that total factor productivity is elastic

to pollution over capital ratio, illustrating an important vulnerability to climate change

(see IPCC, 2022). When pollution per unit of capital increases total factor productivity

falls more than proportionally. It implies that a(π)π is decreasing in π. As a result, X(π)

is an increasing function of π. The last part of the assumption ensures that Lemma 1 is

satisfied.

Example (continued): Note that with the example defined in equation (19), ϵa(π) < −1

implies that π > g1A1/2.

This example illustrates the fact that ϵa(π) < −1 could introduce a lower bound

π > 0 defined by ϵa(π) = −1 such that ϵa(π) < −1 for all π > π.

Under Assumptions 2 and 3, the numerator of (33) is positive and the denominator

is increasing in π. We thus have B′
1(π) < 0. In addition, to ensure a positive debt along

the balanced growth path, we restrict our attention to cases where:

X(π)− 1− δ

a(π)
> (1− τK)α (35)

New debt emissions should be higher than the cost of existing debt. Indeed, using (30)

and (31), X(π) = γ/a(π). It implies that inequality (35) is equivalent to γ > R(π).

Using (33), we have b[γ −R(π)] = a(π)[g − τL(1− α)− τKα]. Since we assume that the
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government budget is characterized by a primary deficit, a BGP should be characterized

by a growth factor larger than the interest factor.

Since the left-hand side of inequality (35) is increasing in π, there exists π1 > 0 such

that X(π1) =
1−δ
a(π1)

+(1−τK)α if there is a value π̃ > 0 such that X(π̃) < 1−δ
a(π̃)+(1−τK)α.

Then, inequality (35) is satisfied for all π > π1, with lim
π→π+

1

B1(π) = +∞. Note that the

existence of π1 > 0 can be compatible with Assumption 2.

Lemma 2 Under Assumptions 1-3, assume that there exists a value π̃ > 0 such that

X(π̃) < 1−δ
a(π̃) + (1 − τK)α. There exists π1 > 0 such that X(π) > 1−δ

a(π) + (1 − τK)α for

π > π1.

Our example illustrates that this lemma is satisfied for a non-empty set of parameters.

Example (continued): Using the example defined in equation (19), we illustrate the

existence of the bound π1. Inequality (35) writes F (π) > (1− τK)α, with:

F (π) ≡ π[g1A1(δ −m) + ψg2] + g1A1(µ− ψg2)

π(g1A1 − π)
(36)

Since F (π) is an increasing function and F (g1A1) = +∞, there exists π1 ∈ (g1A1/2, g1A1)

if F (g1A1/2) < (1− τK)α. This happens if δ −m < A1(1− τK)α/2 and

g1 >
4µ− 2ψg2A1

A1[(1− τK)αA1 − 2(δ −m)]

Using (34), a steady state with positive debt per unit of capital should satisfy:

Σ(π)(1− τL)(1− α) > g − τL(1− α)− τKα+X(π) (37)

Since the left-hand side of this inequality is decreasing and the right-hand side is in-

creasing in π, there exists π2 > 0 such that inequality (37) is satisfied for all π < π2,

with B2(π2) = 0. In this case, we also deduce that under Assumption 3, we have

B′
2(π) < 0. For this, we need to have a value π̂ > 0 such that Σ(π̂)(1 − τL)(1 − α) <

g − τL(1− α)− τKα+X(π̂).

Lemma 3 Under Assumptions 1-3, assume that there exists a value π̂ > 0 such that

Σ(π̂)(1− τL)(1− α) < g − τL(1− α)− τKα+X(π̂). The interval (π1, π2) is non empty

if the following inequality is satisfied:

Σ(π1)(1− τL)(1− α) > g − τL(1− α)− τKα+
1− δ

a(π1)
+ (1− τK)α (38)
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where π2 is defined by Σ(π2)(1− τL)(1− α) = g − τL(1− α)− τKα+X(π2).

Example (continued) : In our example, let π̂ = g1A1 be such that a(π̂) = 0. In this

case, we have X(π̂) = +∞, which ensures the first inequality in the lemma.

Note that in our example, we have π1 is higher but arbitrarily close to g1A1/2 if g1

tends to 4µ−2ψg2A1

A1[(1−τK)αA1−2(δ−m)] . Therefore, inequality (38) is satisfied if Σ(g1A1/2)(1 −

τL)(1− α) > g − τL(1− α)− τKα + 2(1−δ)
A1

+ (1− τK)α. This last inequality is satisfied

if τK and A1 are high enough and the primary deficit is not too important. It proves the

existence of π2 and of a non-empty interval (π1, π2).

Since B1(π1) = +∞ > B2(π1) and B1(π2) > B2(π2) = 0, the economy may be

characterized by an even number (two) of steady states.

Proposition 1 Under Assumptions 1-3, and inequality (38), there exists g > τL(1 −

α) + τKα such that for g ∈ (τL(1− α) + τKα, g), there are (at least) two BGPs, (πI , bI)

and (πII , bII), with πI < πII and bI > bII .

Proof. See Appendix B.

A primary deficit (g > τL(1− α) + τKα) ensures the possibility of having a positive

stationary debt per unit of capital in our context where growth is higher than the interest

factor. At the same time, if the environmental expenditure is too high (g > g), the

primary deficit is too significant to observe stationarity in debt per unit of capital. The

share of GDP devoted to environmental issues has to be an intermediate to observe

stationary solutions. If it is satisfied, we may have two BGP. The BGP characterized

by the lowest pollution to capital ratio (πI) has the highest level of debt over capital

(bI), while the one with the highest pollution-to-capital ratio (πII) is also defined by the

lowest debt per unit of capital (bII). We can note that the decreasing relationship we

observe between π and b is ensured by the sufficient TFP vulnerability (ϵa(π) < −1).

This property is specific to our analytical framework and is explained in detail in the

following section.
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4.2 Balanced growth and the role of TFP sensitivity to pollution

We want to clearly understand the links between pollution to capital, debt to capital,

and growth that come from the comparison of the two BGPs.

First, we turn our attention to the growth factor γ. From (31), we see that it is a

declining function of the debt per capital ratio b, through a priori a usual crowding-out

effect of debt on investment. Moreover, as pollution generates negative external effects

on production and therefore also on the saving rate, the growth factor also depends

negatively on the pollution per capital ratio π. In our context of TFP vulnerability

(ϵa(π) < −1), a BGP with a higher level of π is characterized by a lower debt per

capital ratio b. Therefore, at the BGPs, the relationship between γ and π (or b) seems

ambiguous.

To avoid this ambiguity, we exploit the fact that the growth of capital is equal to

the growth of the pollution stock. Then, using (30) and (31), the growth factor can be

expressed as a function of π:

γ = 1−m+
µ− ψg2a(π)

π
(39)

Hence, we note that the growth factor is higher than 1, i.e. growth is positive, as soon

asm is low enough. The growth factor increases with the pollution flow but decreases with

the current pollution stock. Indeed, since mitigation decreases with pollution through

its effect on TFP, π has two opposite effects on growth, a positive one through pollution

flows and a negative one through the pollution stock.

Therefore, growth is a decreasing function of pollution over capital ratio (and hence

an increasing function of b) if and only if the elasticity of TFP with respect to π satisfies:

−ϵa(π) <
µ− ψg2a(π)

ψg2a(π)
(40)

which may be in accordance with Assumptions 2 and 3. We thus deduce that:

Corollary 1 Under Assumptions 1-3, inequality (38), and g > g > τL(1−α)+ τKα, we

have:

1. γI > γII iif −ϵa(π) < µ−ψg2a(π)
ψg2a(π)

for all π ∈ (π1, π2);

2. γI < γII iif −ϵa(π) > µ−ψg2a(π)
ψg2a(π)

for all π ∈ (π1, π2).

17



In case 1, the growth rate decreases with π, so it is lower in the state with low debt

and high pollution (πII , bII). This configuration is characterized by a not excessive TFP

vulnerability to pollution. When the production is not too sensitive to pollution through

the TFP, a higher level of π means a lower pollution flow over pollution stock, which

implies lower growth.

In case 2, the high TFP vulnerability explains that growth is higher in the state (πII ,

bII). Indeed, a higher level of pollution over capital implies a strong increase in the

pollution flow because of the decrease in public mitigation. Then, the pollution flow over

the pollution stock increases, which implies higher growth.

This result is important as it reveals that as long as we consider a not excessive

TFP vulnerability to pollution (case 1 of Corollary 1), all other things being equal, a

BGP characterized by a lower pollution level per unit of capital is associated with higher

capital growth. Recall that this BGP also has a higher level of debt over capital. A

direct implication of Corollary 1 is that when TFP vulnerability is not excessive, a BGP

with higher growth means a BGP with higher debt over capital. In contrast, when TFP

vulnerability is very high, a BGP with lower growth means a BGP with higher debt over

capital. Therefore, there is a crowding-in effect of debt on growth in the first case and a

crowding-out effect in the second one.

Using (29) and (31), the intertemporal budget constraint evaluated at a BGP can be

written:

b[γ −R(π)] = a(π)[g − τL(1− α)− τKα] (41)

When pollution over capital is low, the TFP and, therefore, the interest factor are

high. This means that both the primary deficit and debt services are high. Debt over

capital is high, even if growth is higher than at the steady state with a higher ratio

of pollution over capital (case 1 of Corollary 1). This explains that higher debt can be

compatible with higher growth. This is an interesting result regarding the macroeconomic

literature that mainly finds that public debt usually has a crowding-out effect on growth

(see the seminal contribution by Diamond, 1965), except in the presence of some financial

imperfections (see Woodford, 1990). Using (41), if the TFP is constant and, therefore,

the interest factor too, we immediately deduce that public debt over capital and growth
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are inversely related. Public debt always has a crowding-out effect on growth.

Now, we want to understand precisely why a high TFP vulnerability to pollution is

the source of a negative link between π and b when we compare both BGPs. We start

by examining the extreme case in which TFP is not sensitive to pollution damage (i.e.

ϵa(π) = 0). It implies that a(π) = a, R(π) = R and Σ(π) = Σ are constant. Equations

(33) and (34) thus become:

B1(π) =
a[g − (τL(1− α) + τKα)]

δ −m− (1− τK)αa+ µ−ψg2a
π

(42)

B2(π) =
a

R

[
Σ(1− τL)(1− α) + τL(1− α) + τKα− g − 1−m

a
− 1

π

(µ
a
− ψg2

)]
(43)

with B′
1(π) > 0 and B′

2(π) > 0. In that case, if there still exist several steady states,

the one with the highest level of pollution over capital will be also characterized by the

highest level of debt over capital. Comparing equations (42) and (43) with equations

(33) and (34) provides insights into the differences that arise.

Equation (42) represents debt over capital as the ratio of the primary deficit over the

new debt emission, which increases with growth, minus the cost of debt services mea-

sured by the interest factor. As previously mentioned, the growth of capital is equal to

the growth of pollution at a BGP, which explains that it is decreasing in the pollution

stock over capital and hence that there is a positive relationship between π and b. When

productivity is negatively affected by pollution over capital, several adding effects may

imply a reversal of this link. These effects can be perceived by using equation (33).

Production being affected negatively by π, a higher π implies a lower primary deficit

a(π)[g − τL(1− α)− τKα]. In addition, the cost of debt reimbursement goes down with

productivity loss. These adding effects, due to endogenous productivity, are important

when vulnerability to pollution is high enough. In that case, we have a negative rela-

tionship between debt over capital and pollution over capital. Equation (43) comes from

the equilibrium on the asset market taking into account that capital growth is equal

to pollution growth and considering the government budget constraint. Debt per unit

of capital is equal to the difference, discounted by the interest factor, between savings

and the sum of the primary deficit and the increase of capital (which is here equal to

pollution growth). When productivity is constant, the only effect of π on b is positive
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and is due to its negative effect on pollution growth, as previously mentioned. When

the TFP decreases with pollution over capital, several adding effects may overturn the

link between debt over capital and pollution over capital. These effects can be perceived

by using equation (34). First, the interest factor decreases with pollution over capital,

which implies that the saving rate decreases too. Second, a lower TFP decreases income

discounted by the interest factor.6

To summarize, TFP vulnerability to pollution implies that higher pollution to capital

reduces product so that the debt to capital ratio reduces too because less deficit has to

be financed and less saving is available to buy public debt. Turning to the analysis of

the dynamics is now essential to determine toward which equilibria the economy will

converge.

5 Dynamics, endogenous tipping zone and sustainability

The first main question we ask is whether the economy might converge to a BGP. Only

in such a case, the economy will be sustainable in the long run. Otherwise, either the

economy will collapse, or pollution over capital will follow an explosive dynamic path. We

will especially identify a zone in terms of initial conditions, that we call the endogenous

tipping zone, such that the economy will not be sustainable.

5.1 Stability of the BGPs

Proposition 1 states that two BGPs with positive debt, capital, and pollution may coexist.

We analyze the dynamics in this interesting case. The question is to know toward which

BGP the economy will converge. We aim to identify the conditions for a sustainable

or explosive and unsustainable dynamic path. The objective is to highlight the respec-

tive roles of fiscal instruments, TFP vulnerability to pollution, and initial conditions on

6We can notice that the negative relationship between b and π may be observed because the depreci-

ation of capital is not complete (δ ̸= 1) and/or because the saving rate increases with the productivity

(σ > 1). Otherwise, when δ = 1 and σ = 1, R(π)/a(π) and Σ(π) are constant. From equation (29),

the debt ratio b does no longer evolve with π. The reduction in the primary deficit and the cost of debt

induced by the increase in π are proportional to the decrease in savings so that the debt-to-capital ratio

does not depend on productivity and thus not on π.
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pollution debt and capital.

The dynamics are driven by equations (24) and (25). They can alternatively be driven

by a combination of (24) and (25), and equation (25).

Let Φt ≡ bt
πt

= Bt
Pt
. Using (24) and (25), we obtain:

Φt+1 =

R(πt)
a(πt)

Φt +
g−τL(1−α)−τKα

πt

X(πt)
(44)

Then, Φt+1 ⩾ Φt is equivalent to:

Φt ⩽
g − τL(1− α)− τKα

πt[X(πt)− 1−δ
a(πt)

− (1− τK)α]
≡ B3(πt) (45)

with B3(πt) = B1(πt)/πt, B3(π1) = ∞, B3(π2) > 0 and B′
3(πt) < 0.

Using Lemma 1, πt+1 ⩾ πt is equivalent to g3(bt, πt) ⩾ πt.
7 Using (25) and (34), this

inequality rewrites bt ⩾ B2(πt). This is equivalent to Φt ⩾ B2(πt)/πt ≡ B4(πt), given by:

B4(πt) =
a(πt)

R(πt)πt
[Σ(πt)(1− τL)(1− α) + τL(1− α) + τKα− g −X(πt)] (46)

with B′
4(πt) < 0, B4(π1) > 0 and B4(π2) = 0.

We can draw a phase diagram using these different ingredients and the results of the

previous section. The stationary values of debt over pollution are ΦI =
bI
πI

and ΦII =
bII
πII

.

Since B3(πt) and B4(πt) are both decreasing and πI < πII , we deduce that ΦI > ΦII .

We further note that B′
3(πI) < B′

4(πI), while B
′
3(πII) > B′

4(πII).

The qualitative picture of the dynamics is represented in Figure 2. We conjecture

that the steady state (πI ,ΦI) is stable, whereas the steady state (πII ,ΦII) is a saddle.

Since the two dynamic variables πt and Φt are predetermined, a saddle is generically

unstable. We will now confirm this conjecture by the analysis of local dynamics.

Proposition 2 Under Assumptions 1-3, inequality (38), and g ∈ (τL(1− α) + τKα, g),

we have the following:

1. The steady state (πII , bII ,ΦII) is a saddle;

7Using the proof of Lemma 1, g3(bt, πt) = πt is equivalent toG3(πt, bt, πt) = πt and we have g3(bt, πt) ⩾

πt is equivalent to G3(πt, bt, πt) ⩾ πt because one function is an increasing transformation of the other

one.
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Figure 2: Dynamics

2. The steady state (πI , bI ,ΦI) is locally stable if τL is high enough and ϵa(π) is not

too negative.

Proof. See Appendix C.

This proposition shows that the economy never converges to the steady state with a

high level of pollution over capital. As pollution, debt, and capital are all predetermined,

the saddle (πII , bII) is never achieved and therefore delimits a pollution trap, as we will

discuss later. Indeed, when initial conditions are characterized by too high levels of

pollution and debt with respect to capital, the economy cannot converge to a long-run

BGP. Both bt and πt increase across time. The too high level of pollution over capital

implies a too low TFP and GDP growth to be compatible with the convergence to a

stable and sustainable BGP. When pollution over capital is not too high, the economy

would converge to the BGP characterized by the low level of pollution over capital and
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the highest level of debt over capital or pollution (πI , bI). Such a dynamic path could

experience oscillations converging to the steady state. Depending on the level of pollution

over the capital, the convergence to this steady state does not require a so low debt

relative to capital. The stability of this BGP requires a not too strong TFP vulnerability

to pollution and a high tax rate on labor income. If the first condition is not fulfilled,

any increase in pollution over capital implies a strong decrease in GDP and, therefore,

investment in future capital due to the high TFP vulnerability to pollution. Future

pollution over capital increases even more, generating an explosive dynamic path (see for

instance equation (25)). Under the last condition, savings are low enough to prevent an

unsustainable build-up of debt and capital.

5.2 Endogenous tipping zone (ETZ)

Since the steady-state (πII , bII ,ΦII) is a saddle, it has one stable and one unstable

manifold. By inspection of Figure 2, we observe that the stable manifold of this steady-

state delineates a zone such that when the economy is on the right side of this manifold,

pollution will be explosive. We call this zone an Endogenous Tipping Zone (ETZ),

because it is endogenously defined by the dynamic behavior of the economy. In the

following proposition, we show that:

Proposition 3 Under Assumptions 1-3, inequality (38), and g ∈ (τL(1− α) + τKα, g),

the stable manifold of the steady state (πII , bII ,ΦII) has a negative slope at least in the

neighborhood of the steady state, while the unstable manifold has a negative slope but

higher than the stable one.

Proof. See Appendix E.

The stable manifold (SM) of the steady state (πII , bII ,ΦII) is clearly represented in

Figure 3. Since the two dynamic variables are predetermined, the economy is generically

on the left or the right side of this decreasing curve. If the initial conditions are such

that the economy is on the left side of (SM), the dynamics could be characterized by

convergence to the stable steady state with an increase in the long run of debt over

pollution and capital and a decrease in pollution per unit of capital.
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If the initial conditions are such that we are on the right side of (SM), pollution per

unit of capital will increase a priori indefinitely. Since the unstable manifold is negatively

sloped, pollution will also increase with respect to debt. The economy is in the ETZ if

the stock of pollution is sufficiently high with respect to capital. Interestingly, at least

around the BGP, the ETZ is delimited by a negatively slopped relationship between Φt

and πt. This means that the economy will experience explosive paths for lower levels of

pollution over capital when the debt relative to pollution is higher. When an economy is

already burdened with high levels of debt, it may struggle to allocate additional resources

toward pollution reduction efforts and adaptation. A vicious cycle is triggered, where

a high level of debt does not translate into significant spending on pollution control.

Instead, it illustrates an inability to adapt and mitigate adequately, thereby increasing

damages and making it more difficult to stabilize debt and pollution per unit of capital.

In contrast, the lower the debt over pollution, the higher the level of pollution over capital
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to have an explosive path. This means that lower public debt and higher capital allow

to reach a sustained growing economy more easily.

Considering the damage of pollution stock on production, we provide a theoretical

mechanism explaining why, for a given pollution-to-capital ratio, the likelihood of ob-

serving explosive paths for pollution is higher in countries with higher debt. Such a

detrimental situation is pointed out in the literature, but as we can remark in Zenios

(2024), the papers that attempt to formalize it focus mainly on the impact of climate

risks on public spending; He highlights that these risks increase the cost of public debt,

making public finances even more vulnerable. We obtain a similar conclusion of debt

vulnerability considering a purely deterministic context.

The importance of our result is all the greater as public debt-to-GDP ratios have risen

for decades and have reached record levels in a significant number of both developed and

developing countries (see Figure 1 and WorldBank, 2023). This trend, combined with

the heightened vulnerability to environmental issues, emphasizes the need to propose

adapted policy tools to avoid a vicious circle of pollution over debt.

5.3 Unsustainability

As it is suggested in Proposition 2, the system can also be completely unsustainable. This

happens if no steady state is stable, i.e. if the equilibrium (πI , bI ,ΦI) is unstable. In

such a situation, pollution and debt over capital will follow an explosive dynamic paths.

As we will see, it can occur if the TFP vulnerability to pollution is high and the tax

rates are low. The next proposition provides sufficient conditions for such an undesirable

configuration:

Proposition 4 Under Assumptions 1-3, inequality (38), and g ∈ (τL(1− α) + τKα, g),

the steady state (πI , bI ,ΦI) is unstable if τL is low enough, ϵa(π) < −2, 1 +m > 2δ and

1− τK > µ/[2αa(π2)π2].

Proof. See Appendix D.

This proposition gives sufficient conditions to have all steady states saddle or unstable.

It particularly requires sufficiently low tax rates on capital and labor incomes and a
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strong TFP vulnerability to pollution. When the tax rates are low, the primary deficit

is important, as is the cost of debt. Both effects directly deteriorate public finance. The

positive impact of low tax rates on aggregate savings is not sufficient to compensate.

Low taxation creates conditions promoting unsustainable debt levels and hence hinders

the government’s ability to tackle pollution issues. Moreover, when TFP is highly vul-

nerable to pollution damage, the economy can never converge to a long-run BGP. As we

have already seen, a small increase in pollution over capital implies a strong decrease in

production and capital, which implies a larger future increase in pollution over capital.

Either pollution and debt will go to infinity, characterizing a vicious circle of debt and

pollution or the economy will collapse.

To summarize this section, high levels of tax rates are key ingredients to rule out

an explosive accumulation of pollution and debt. However, the economy may be unsus-

tainable for technological reasons, i.e. a high TFP vulnerability to pollution. Finally,

high initial levels of debt and pollution with respect to capital promote instability of the

dynamic path. Note that a high initial debt over capital is not a priori a source for

unsustainability since it may reinforce the possibility of converging to the stable steady

state with low pollution over capital. It will depend on the level of pollution over capital.

6 Policy implications

We are now interested in a configuration of possible sustainability. This means that we

consider the case in which the BGP (πI , bI ,ΦI) is locally stable.8 In this encouraging

situation, we examine which public policy can improve welfare. For this aim, we pre-

cisely study the effect of policy variables that allow the management of environmental

adaptation and mitigation, g1 and g2, and the fiscal revenue, τL and τK , on the welfare

at a BGP.

We start by evaluating the welfare at a BGP i = {I, II}. The consumptions are given

8Based on Proposition 2, this implies a TFP vulnerability to pollution not too important. We also

consider in this section the case in which growth is decreasing with pollution ratio π, i.e. −ϵa(π) <

µ−ψg2a(π)
ψg2a(π)

.
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by:

cit = (1− Σ(πi))(1− τL)wit

dit+1 = R(πi)Σ(πi)(1− τL)wit

with wit = (1 − α)a(πi)γ
t
iK0. Substituting these two consumptions into the utility

function (10), we get:

U(cit, dit+1) =
[
(1− Σ(πi))

σ−1
σ + β(R(πi)Σ(πi))

σ−1
σ

] σ
σ−1

(1− τL)(1− α)a(πi)γ
t
iK0

Therefore, the main factor determining the utility evaluated at a BGP is the growth

factor γi. Based on (39), we see that policy variables affect γi through their impact on

πi. In addition, we note that the policy variable g2 has also a direct negative effect on

the growth rate.

One necessary step to determine how policy variables modify welfare is to examine

their effects on (πi, bi). For this aim, we redefine all relevant equations as functions of

(πi, bi) and policy instruments (τL, τK , g1, g2). Productivity can thus be defined as a

function of g1 and πi:

A(G1/P ) = A[θ(πi, g1)] ≡ Θ(πi, g1)

where θ(πi, g1) is defined by (18), and is increasing in g1 and decreasing in πi. We deduce

the sign of the two following derivatives: Θg1(πi, g1) > 0, Θπi(πi, g1) < 0. The function

Θg1(πi, g1) captures how productivity responds to a variation in mitigation.

We present the influence of fiscal policy, via τL and τK , and environmental policy,

through g1 and g2, focusing on the potentially stable and sustainable steady state (bI , πI)

(see Proposition 2).9

Lemma 4 Under Assumptions 1-3 and inequality (38), we have the following properties:

� An increase in τL and/or τK increases bI and reduces πI ;

� An increase in g1 reduces πI if Θg1(π, g1) is high enough, τL is high and g− τL(1−

α)− τKα is not too small;

� If ψ < π, an increase in g2 reduces bI and increases πI .

9The effects of comparative statics on the other steady state (bII , πII) are the opposite.
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Proof. See Appendix F.

Lemma 4 emphasizes that at the low pollution BGP (bI , πI), more stringent taxation

reduces pollution over capital. This is because more fiscal revenue reduces the primary

deficit and hence promotes capital investment. However, even though the government

earns more revenue from taxation, the reduction in pollution to capital ratio goes with an

increase in the debt ratio. Higher fiscal pressure leading to a higher debt over capital can

appear counter-intuitive. It is driven by two key assumptions: Productivity reacts to the

fall in pollution per unit of capital and there is a primary deficit (g > τL(1− α) + τKα).

In this context, the increase in the debt ratio is a positive side effect of productivity

gains, which is facilitated by the reduction in pollution damage. Note that even if the

qualitative effect of tax on capital and labor is similar (in particular, both reduce saving)

it masks different mechanisms. Labor tax reduces labor income while capital taxation

reduces the cost of capital and debt and hence the saving rate.

Concerning environmental policy variables, an increase in the share of the public bud-

get allocated to adaptation leads to the following consequences: The rise in g1 generates

competing effects on productivity and hence on pollution to capital ratio. First, it puts

pressure on the primary deficit, leading to a reduction in capital accumulation due to a

crowding-out effect. This increases pollution per unit of capital (π) and reduces produc-

tivity. Second, the increase in g1 has a direct positive effect on productivity, as a larger

share of public spending is allocated to adaptation. When productivity is sufficiently

sensitive to g1 (Θg1(π, g1) high enough), the negative effect driven by the crowding-out is

surpassed by the direct positive effect of g1. Pollution per unit of capital (π) goes down

while productivity goes up.

Concerning the effect of mitigation, the efficiency of public spending to reduce pol-

lution flow (captured by ψ) is crucial, because it determines how pollution and debt

respond to an increase in g2 at the BGP. More precisely, we can observe a backfire effect

of mitigation policy in the sense that it can increase pollution per unit of capital and re-

duce debt. Indeed, as for g1, the rise in g2 puts pressure on the primary deficit, leading to

a reduction in capital accumulation due to a crowding-out effect. This, in turn, leads to
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an increase in pollution per unit of capital (π), resulting in decreased productivity a(π).

At the same time, the increase in g2 has a direct negative effect on pollution, whose

importance depends on ψ, as a larger share of public spending is allocated to mitigation.

However, when mitigation is not sufficiently efficient to reduce pollution flow, i.e. ψ < π,

this direct effect of an increase in g2 on pollution is less than proportional to a(π). The

negative feedback effects of an increase in mitigation on capital accumulation, and hence

on productivity, surpasses the initial effect of the policy.

Now, we can identify welfare-improving policy scenarios along the BGP i = I, i.e.

policy scenarios that increase the growth factor γI . Using the relationship between πI

and policy instruments presented in Lemma 4, Corollary 1, that gives the link between

πI and the growth rate, and equation (39), we have the following result:

Proposition 5 Under Assumptions 1-3, inequality (38) and −ϵa(π) < µ−ψg2a(π)
ψg2a(π)

, the

welfare along the BGP i = I

� increases with taxation τL and τK

� increases with the share of budget allocated to adaptation g1 if Θg1(π, g1) is high

enough, τL is high and g − τL(1− α)− τKα is not too small

� decreases with the share of budget allocated to mitigation g2 if ψ is sufficiently low

Proof. See Appendix G.

The results in terms of welfare highly depend on −ϵa(π). This condition comes from

Corollary 1. As −ϵa(π) is lower than µ−ψg2a(π)
ψg2a(π)

, the growth rate (and hence welfare)

evaluated at a BGP decreases with pollution over capital.

When the TFP vulnerability to pollution is still not too high, a more stringent fiscal

policy is a means to increase welfare as it allows for a reduction in the pollution-to-capital

ratio. For environmental instruments, this is not so evident because their financing costs

can heavily burden the primary budget. This creates a crowding-out effect that outweighs

the benefits when the effectiveness of these policies in achieving their main objectives

(reducing pollution or increasing adaptation) is limited. However, when TFP reacts
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sufficiently to adaptation expenditures, this spending can improve growth and welfare

despite the fact the primary deficit enlarges.

To illustrate in particular that the condition Θg1(π, g1) high can be in accordance with

an elasticity of productivity with respect to pollution ratio satisfying −ϵa(π) < µ−ψg2a(π)
ψg2a(π)

,

let us come back on our example.

Example (continued): In our example, −ϵa(π) = π/g1
A1−π/g1 = A1

a(π) − 1. Thus, condition

(40) is equivalent to µ > A1ψg2, which holds under Assumption 2. This means that

−ϵa(π) < µ−ψg2a(π)
ψg2a(π)

. Moreover, in our example we have Θg1(π, g1) = π/g21 which is

high if g1 is low. In such a case, an increase of g1 can improves welfare, as shown in

Proposition 5.

Finally, according to Assumption ??, mitigation is not highly efficient. Consequently,

relying solely on this instrument is not a viable option for increasing welfare, as it does

not directly dampen the fall in productivity caused by global pollution.

7 Conclusion

This paper examines the complex interplay between public debt, environmental quality,

and economic growth, particularly pertinent in the context of growing public debt and

global pollution concerns. We address these issues within an endogenous growth frame-

work that incorporates public debt dynamics, adaptation and mitigation spending, and

feedback effects of pollution on productivity. We identify two balanced growth paths

characterized by varying levels of pollution and debt relative to capital. Depending on

fiscal policy, initial conditions, and the responsiveness of productivity to pollution and

adaptation, the economy either converges to a sustainable BGP, collapses, or experiences

perpetual increases in debt and pollution. Unsustainable debt and pollution arise partic-

ularly when pollution-induced damage severely impacts productivity, underscoring the

importance of policy interventions for environmental and fiscal stability.

Our results suggest that technological efficiency is fundamental: Improving technol-

ogy to adapt to the impacts of climate change is important for welfare at a sustainable
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path. Government should start tackling global emissions (mitigation and adaptation) be-

fore a pollution threshold is reached; crossing this threshold, on the other hand, pushes

the economy into a tipping zone of unsustainability. Finally, since environmental policies

can be financed through both public debt and income tax revenues, we find conditions

under which fiscal policy is a key element in reconciling debt sustainability and environ-

mental sustainability.

Our findings suggest that increasing taxation, particularly in contexts where produc-

tivity is highly sensitive to pollution damage, can enhance welfare along stable growth

paths. This emphasizes the crucial role of efficient environmental policy instruments in

promoting adaptation.

Appendix

A Proof of Lemma 1

We examine the properties of equations (23)-(25). We have R(πt)/a(πt) = (1−δ)/a(πt)+

(1− τK)α which is increasing in πt as a(πt) is a decreasing function. Moreover, as Σ(πt)

is also decreasing, we can summarize the properties of equations (23)-(25) as follows:

γt+1 = G1(bt, πt, πt+1), with G1,bt < 0, G1,πt < 0, G1,πt+1 < 0 (A. 1)

bt+1 = G2(bt, πt, πt+1), with G2,bt > 0, G2,πt > 0, G2,πt+1 > 0 (A. 2)

πt+1 = G3(bt, πt, πt+1), with G3,bt > 0, G3,πt > 0, G3,πt+1 > 0 (A. 3)

By definition of the function a(π), we have:

ϵa(π) =
A′(G1/P )G1/P

A(G1/P )

ϵ′(π)π

ϵ(π)
= −

A′(G1/P )G1/P
A(G1/P )

1− A′(G1/P )G1/P
A(G1/P )

which can take any value in the interval (−∞, 0), depending on the technological features.

We also have:
R′(π)π

R(π)
=

(1− τK)αa(π)

R(π)
ϵa(π)

and therefore:
Σ′(π)π

Σ(π)
=

σ − 1

1 + βσR(π)σ−1

(1− τK)αa(π)

R(π)
ϵa(π)
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We deduce that:

G3,πt+1πt+1

G3
= −a(πt+1)Σ(πt+1)(1− τL)(1− α)

γt+1

(1− τK)αa(πt+1)

R(πt+1)

σ − 1

1 + βσR(πt+1)σ−1
ϵa(πt+1)

Since the first two ratios on the right-hand side are smaller than 1,
G3,πt+1πt+1

G3
< 1 if σ

is close to 1 and |ϵa(πt+1)| is not infinite. In this case, equation (A. 3) implicitly defines

πt+1 as an increasing function of bt and πt. Substituting this equation in (A. 2), we get

bt+1 = G2(bt, πt, g3(bt, πt)) ≡ g2(bt, πt), which is increasing with respect to bt and πt.

These two equations determine the dynamics of (bt, πt) for all t ≥ 0. Then the growth

factor is given by γt+1 = G1(bt, πt, g3(bt, πt)) ≡ g1(bt, πt), which is decreasing with respect

to bt and πt.

B Proof of Proposition 1

There exist (at least) two BGPs if there are two solutions π ∈ (π1, π2) to the equation

B1(π) = B2(π). Since B1(π1) > B2(π1) and B1(π2) > B2(π2), it requires the existence

of at least one value of π ∈ (π1, π2) such that B1(π) < B2(π).

Using equations (33) and (34), the inequality B1(π) < B2(π) is equivalent to:

Ω(π) > g − τL(1− α)− τKα (B. 4)

with

Ω(π) ≡ a(π)

R(π)

[
X(π)− 1− δ

a(π)
− (1− τK)α

]
[Σ(π)(1− τL)(1− α) + τL(1− α) + τKα− g −X(π)] (B. 5)

By construction, we have Ω(π1) = Ω(π2) = 0 and Ω(π) > 0 for all π ∈ (π1, π2). Let

us consider π̃ = λπ1, with λ ∈ (1, π2/π1) a constant independent of g. Then, π̃ does

not depend on g and Ω(π̃) > 0. When g tends to τL(1 − α) + τKα, inequality (B. 4)

evaluated at π = π̃ is satisfied. By continuity, there exists g > τL(1 − α) + τKα such

that Ω(π̃) > g − τL(1 − α) − τKα for all g ∈ (τL(1 − α) + τKα, g). This proves the

existence of two solutions πI and πII , with π1 < πI < πII < π2. Since B1(π) and B2(π)

are decreasing functions, the associated stationary values bI and bII are ranked in the

following way: bI > bII .
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C Proof of Proposition 2

The dynamic system we consider is given by equation (44) and equation (25) which

rewrites:

πt+1 =
X(πt)πt

Σ(πt+1)(1− τL)(1− α) + (τL(1− α) + τKα)− g − R(πt)
a(πt)

πtΦt
(C. 6)

Let us note R(π)/a(π) = (1− δ)/a(π) + (1− τK)α ≡ R̃(π). We have X ′(π) > R̃′(π)

and, using (35), X(π) > R̃(π).

Differentiating equation (44), we get:

dΦt+1

Φ
=

R̃(π)

X(π)

dΦt
Φ

+

[
R̃′(π)π

R̃(π)

R̃(π)

X(π)
− g − τL(1− α)− τKα

πΦX(π)
− X ′(π)π

X(π)

]
dπt
π
(C. 7)

Differentiating (C. 6), we get:[
1 +

Σ′(π)π(1− τL)(1− α)a(π)

γ

]
dπt+1

π
=
R(π)πΦ

γ

dΦt
Φ

+

[
1 +

X ′(π)π

X(π)
+
R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1

)]
dπt
π

(C. 8)

where 1 + Σ′(π)π(1− τL)(1− α)a(π)/γ > 0 under Lemma 1.

The trace T and the determinant D of the associated Jacobian matrix are given by:

T =
R̃(π)

X(π)
+

1 + X′(π)π
X(π) + R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1
)

1 + Σ′(π)π(1−τL)(1−α)a(π)
γ

> 1 (C. 9)

D =

R̃(π)
X(π)

(
1 + X′(π)π

X(π) + R(π)πΦ
γ

)
+ R(π)πΦ

γ

(
g−τL(1−α)−τKα

πΦX(π) + X′(π)π
X(π)

)
1 + Σ′(π)π(1−τL)(1−α)a(π)

γ

(C. 10)

and define the characteristic polynomial P (λ) ≡ λ2−Tλ+D = 0. We have P (0) = D > 0.

Since P (−∞) = +∞, P (+∞) = +∞, and T > 1, the two roots are positive or complex

conjugates.

Using R̃(π) = R(π)/a(π), γ = a(π)X(π) and equation (44) at a steady state, T and
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D rewrite:

T =
R̃(π)

X(π)
+

1 + X′(π)π
X(π) + R̃(π)πΦ

X(π)

(
R̃′(π)π

R̃(π)
+ 1
)

1 + Σ′(π)π(1−τL)(1−α)
X(π)

> 1 (C. 11)

D =

R̃(π)
X(π)

(
1 + X′(π)π

X(π) + R̃(π)πΦ
X(π)

)
+ R̃(π)πΦ

X(π)

(
1− R̃(π)

X(π) +
X′(π)π
X(π)

)
1 + Σ′(π)π(1−τL)(1−α)

X(π)

=

R̃(π)
X(π)

(
1 + X′(π)π

X(π)

)
(1 + πΦ)

1 + Σ′(π)π(1−τL)(1−α)
X(π)

(C. 12)

We deduce that:

P (1) = 1− T +D

=

(
1− R̃(π)

X(π)

)(
Σ′(π)π(1−τL)(1−α)

X(π) − X′(π)π
X(π)

)
+ R̃(π)πΦ

X(π)

(
X′(π)π
X(π) − R̃′(π)π

R̃(π)

)
1 + Σ′(π)π(1−τL)(1−α)

X(π)

(C. 13)

Using (45) and (46), we rewrite B3(π) and B4(π) as follows:

B3(π) =
g − τL(1− α)− τKα

π[X(π)− R̃(π)]
(C. 14)

B4(π) =
1

R̃(π)π
[Σ(π)(1− τL)(1− α) + τL(1− α) + τKα− g −X(π)] (C. 15)

We deduce that:

B′
3(π)π

B3(π)
= −1− X ′(π)− R̃′(π)

X(π)− R̃(π)
π (C. 16)

B′
4(π)π

B4(π)
= −1− R̃′(π)π

R̃(π)
+

Σ′(π)π(1− τL)(1− α)

ΦR̃(π)π
− X(π)

ΦR̃(π)π

X ′(π)π

X(π)
(C. 17)

After some computations, we can show that
B′

3(π)π
B3(π)

<
B′

4(π)π
B4(π)

is equivalent to:(
1− R̃(π)

X(π)

)(
Σ′(π)π(1− τL)(1− α)

X(π)
− X ′(π)π

X(π)

)
+
R̃(π)πΦ

X(π)

(
X ′(π)π

X(π)
− R̃′(π)π

R̃(π)

)
> 0 (C. 18)

We recall that B′
3(πI) < B′

4(πI) and B
′
3(πII) > B′

4(πII). By inspection of equations

(C. 13) and (C. 18), we deduce that P (1) > 0 at the steady state (πI ,ΦI) and P (1) < 0

at the steady state (πII ,ΦII). Therefore, the steady-state (πII ,ΦII) is a saddle, with one

eigenvalue between 0 and 1 and one higher than 1. The steady-state (πI ,ΦI) is stable if

D < 1 and unstable if D > 1.
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Using (C. 12) and πΦ = b, D < 1 is equivalent to:

R̃(π)(1 + b) <
X(π) + Σ′(π)π(1− τL)(1− α)

1 + X′(π)π
X(π)

(C. 19)

Using the expression of R̃(π) and equation (34), the left-hand side of inequality (C.

19) is given by:

R̃(π)(1+b) = Σ(π)(1−τL)(1−α)−[g−τL(1−α)−τKα]−[X(π)−R̃(π)] < Σ(π)(1−τL)(1−α)

(C. 20)

which is arbitrarily low if the tax rate τL is high. Using X(π) = 1−m
a(π) − ψg2

π + µ
a(π)π , we

also have:

X ′(π)π

X(π)
=

−1−m
a(π) ϵa(π) +

ψg2
π − µ

a(π)π (1 + ϵa(π))

1−m
a(π) − ψg2

π + µ
a(π)π

(C. 21)

Therefore, X ′(π)π/X(π) is not too high if ϵa(π) is not too negative.

We deduce that we have D < 1, which ensures the stability of the steady state

(πI ,ΦI), if τL is sufficiently close to high and close to 1 and ϵa(π) is not too negative.

Note that at least when D is close to 1, the eigenvalues are complex conjugates, meaning

that the dynamic path converges with oscillations around the steady state.

D Proof of Proposition 4

Using the proof of Proposition 2, we know that the steady state (πI ,ΦI) is unstable if

D > 1, i.e.

R̃(π)(1 + b) >
X(π) + Σ′(π)π(1− τL)(1− α)

1 + X′(π)π
X(π)

(D. 22)

which requires τL sufficiently low and ϵa(π) sufficiently negative.

Using X(π) = 1−m
a(π) − ψg2

π + µ
a(π)π and (C. 21), the inequality X ′(π)π/X(π) > 1 can

be written:

−1−m

a(π)
ϵa(π) +

ψg2
π

− µ

a(π)π
(1 + ϵa(π)) >

1−m

a(π)
− ψg2

π
+

µ

a(π)π

which is equivalent to:

−1−m

a(π)
(1 + ϵa(π)) + 2

ψg2
π

− µ

a(π)π
(2 + ϵa(π)) > 0
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This inequality is satisfied for ϵa(π) < −2. Using the facts that X ′(π)π/X(π) > 1 and

Σ′(π) < 0, inequality (D. 22) is satisfied if:

R̃(π)b >
X(π)

2
− R̃(π) (D. 23)

The left-hand side of this inequality is positive, whereas the right-hand side is strictly

negative if X(π) < 2R̃(π), i.e.

−ψg2
π

<
1− 2δ +m

a(π)
+ 2(1− τK)α− µ

a(π)π
(D. 24)

Since a(π)π is decreasing, this last inequality is satisfied if 1 + m > 2δ and 1 − τK >

µ/[2αa(π2)π2]. It gives a sufficient condition to have D > 1.

E Proof of Proposition 3

The Jacobian matrix of the linearized dynamic system is given by:

J =

 R̃(π)
X(π)

R̃′(π)π

R̃(π)

R̃(π)
X(π) −

g−τL(1−α)−τKα
πΦX(π) − X′(π)π

X(π)

R(π)πΦ
γden

1
den

[
1 + X′(π)π

X(π) + R(π)πΦ
γ

(
R̃′(π)π

R̃(π)
+ 1
)]


with:

den ≡ 1 +
Σ′(π)π(1− τL)(1− α)a(π)

γ
∈ (0, 1)

Let Es = (1, es) be the eigenvector associated to the stable eigenvalue λs ∈ (0, 1). We

have JEs = λsEs. Using the second equation of this system, we deduce that:

R(π)πΦ

γden
= es

[
λs −

1

den

[
1 +

X ′(π)π

X(π)
+
R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1

)]]

Since we have:

λs < 1 <
1

den

[
1 +

X ′(π)π

X(π)
+
R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1

)]

we deduce that es < 0. This means that the eigenvector associated with the stable

eigenvalue has a negative slope. On the stable manifold, we have dΦt
Φ /dπtπ = 1/es < 0 in

the neighborhood of the steady state.
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Let Eu = (1, eu) be the eigenvector associated to the unstable eigenvalue λu > 1.

det(J − λuI) = 0 is equivalent to:(
R̃(π)

X(π)
− λu

){
1

den

[
1 +

X ′(π)π

X(π)
+
R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1

)]
− λu

}

= −R(π)πΦ
γden

[
g − τL(1− α)− τKα

πΦX(π)
+
X ′(π)π

X(π)
− R̃′(π)π

R̃(π)

R̃(π)

X(π)

]

Since X ′(π) > R̃′(π), X(π) > R̃(π) and λu > 1, the right-hand side of this equation

is strictly negative, which implies that:

λu <
1

den

[
1 +

X ′(π)π

X(π)
+
R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1

)]

Using

R(π)πΦ

γden
= eu

[
λu −

1

den

[
1 +

X ′(π)π

X(π)
+
R(π)πΦ

γ

(
R̃′(π)π

R̃(π)
+ 1

)]]

we deduce that eu < 0, which means that the eigenvector associated to the unstable

eigenvalue has a negative slope. On the unstable manifold, we have dΦt
Φ /dπtπ = 1/eu < 0

in the neighborhood of the steady state. Since λu > λs, we even have 1/eu > 1/es,

which means that around the steady state, the negative slope of the unstable manifold

is greater than the one of the stable manifold.

F Proof of Lemma 4

Using (29)-(31), the system that defines the stationary solutions can be rewritten as:

bi =
g1 + g2 − (τL(1− α) + τKα)

z(πi, g1, g2)− y(πi, g1, τK)
≡ B1(πi, g1, g2, τK , τL) (F. 25)

bi =
[x(πi, g1, τK)(1− τL)(1− α) + τL(1− α) + τKα− (g1 + g2)− z(πi, g1, g2)]

y(πi, g1, τK)

≡ B2(πi, g1, g2, τK , τL) (F. 26)

with

x(πi, g1, τK) =
βσ(1− δ + α(1− τK)Θ(πi, g1))

σ−1

1 + βσ(1− δ + α(1− τK)Θ(πi, g1))σ−1
.

37



The sign of partial derivatives are: xg1 > 0; xπi < 0; xτK < 0.

y(πi, g1, τK) = (1− δ)/Θ(πi, g1) + α(1− τK).

The sign of partial derivatives are: yπi > 0; yg1 < 0; yτK < 0;

and

z(πi, g1, g2) =
1−m

Θ(πi, g1)
− ψg2

πi
+

µ

Θ(πi, g1)πi
.

The sign of partial derivatives are: zπi > 0; zg1 < 0; zg2 < 0.

Total differentiation of Equations (F. 25) and (F. 26) gives:

C ×

db
dπ

 = D ×


dg1

dg2

dτL

dτK


where

C =

1 −B′
1(π)

1 −B′
2(π)


with B′

1(π) =
∂B1(π,g1,g2,τK ,τL)

∂π and B′
2(π) =

∂B2(π,g1,g2,τK ,τL)
∂π and where

D =

D1 D2 D3 D4

D5 D6 D7 D8



=

 1+
bΘg1
(Θ)2

(δ−m+µ/π)

z−y
π+ψb
π(z−y)

α−1
z−y

−α(1+b)
z−y

xg1 (1−τL)(1−α)−1+
Θg1
(Θ)2

(b(1−δ)+µ/π+1−m)

y
ψ−π
πy

(1−α)(1−x)
y

α
(

(1−σ)x(1−τL)(1−α)
y2(1+βσ(yΘ)1−σ)

+ 1+b
y

)


(F. 27)

The determinant of matrix C is det C(π) = B′
1(π) − B′

2(π). We recall that B′
1(πI) <

B′
2(πI) and B

′
1(πII) > B′

2(πII). We thus have det C(πI) < 0 and det C(πII) > 0. More-

over, under Assumptions 1-3, we have D1,D2,D7,D8 > 010, D3,D4 < 0. The sign of D5

and D6, referring to the impact of environmental policy variables, g1 and g2, depends on

policy and model parameters and is discussed later.

We obtain the effects of policy variables on stationary variables examining:

db

dπ

 =
1

det C(π) ×

−B′
2(π) B′

1(π)

−1 1

×D ×


dg1

dg2

dτL

dτK


10As σ is higher but close to one under Assumption 3.
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� Effect of g1
db

dg1
=

−B′
2(π)D1 +B′

1(π)D5

det C(π)

dπ

dg1
=

−D1 +D5

det C(π)

Using the expression for D1 and D5 given in (F. 27), we have:

dπ

dg1
=

(
xg1(1− τL)(1− α)− 1 +

Θg1
Θ2

(
b(1− δ) + µ

π + 1−m
)

y

−
1 +

bΘg1
Θ2

(
δ −m+ µ

π

)
z − y

)
× 1

det C(π)

with

xg1 = (σ − 1)αΘg1

βσ(1− δ + α(1− τK)Θ(π, g1))
σ−2

(1 + βσ(1− δ + α(1− τK)Θ(π, g1))σ−1)2
> 0

which is increasing in Θg1 . Rewriting the previous equation, we obtain:

dπ

dg1
=

(
−z

y(z − y)
+
xg1(1− τL)(1− α)

y
+

Θg1

yΘ2

[
b(1− δ) +

µ

π
+ 1−m

−b y

z − y

(µ
π
+ δ −m

)])
× 1

det C(π)
(F. 28)

Using (F. 25) and (F. 26), we have:

y

z − y
<

x(1− τL)(1− α)

g − τL(1− α)− τKα

The right-hand side of this inequality is small if τL is high and g− τL(1−α)− τKα

is not too small. In this case, the term into brackets in equation (F. 28) is positive

such that for Θg1 high enough, we have sgn
(
dπI
dg1

)
< 0 and sgn

(
dπII
dg1

)
> 0. Given

the expression for db
dg1

, we do not conclude concerning the impact of g1 on b in this

configuration.

We can note that as long as Θg1 is low enough, D5 < 0. This implies db
dg1

< 0 and

dπ
dg1

> 0 for the BGP i = I and the reverse for the BGP i = II.

� Effect of g2.
db

dg2
=

−B′
2(π)D2 +B′

1(π)D6

det C(π)
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dπ

dg2
=

−D2 +D6

det C(π)
=

1

π

(
ψ − π

y
− π + ψb

z − y

)
When ψ < π we have D6 < 0. In that case, an increase in g2 means that πI and

bII increases while πII and bI decrease.

� Effect of τL

db

dτL
=

−B′
2(π)D3 +B′

1(π)D7

det C(π)

dπ

dτL
=

−D3 +D7

det C(π)
We have dπ

dτL
< 0 and db

dτL
> 0 for the BGP i = I and the reverse, dπ

dτL
> 0 and

db
dτL

< 0, for the BGP i = II.

� Effect of τK
db

dτK
=

−B′
2(π)D4 +B′

1(π)D8

det C(π)

dπ

dτK
=

−D4 +D8

det C(π)
We have dπ

dτK
< 0 and db

dτK
> 0 for the BGP i = I and the reverse, dπ

dτK
> 0 and

db
dτK

< 0, for the BGP i = II.

G Proof of Proposition 5

We examine how policy variables affect γI to deduce the welfare effect along the stable

BGP i = I. Using (39), we have:

γI = 1−m+
µ− ψg2a(πI)

πI
(G. 29)

The proof of Lemma 4 reveals that dπI
dτL

< 0 and dπI
dτK

< 0 and gives the conditions

to have dπI
dg1

< 0 or > 0. In the configuration where the fall in πI is good for growth(
−ϵa(π) < µ−ψg2a(π)

ψg2a(π)

)
, we directly have the policy scenarios for fiscal and adaptation

policies that increase welfare.

As regards mitigation g2, it exerts a direct negative effect on growth, in addition to

its effect through π. Lemma 4 gives a condition such that dπI
dg2

> 0, meaning that in the
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configuration where the fall in πI is good for growth, the increase in g2 has a double

negative effect on welfare.
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