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Abstract

Recurring statistical issues such as censoring, selection and heteroskedasticity

often impact the analysis of observational data. We investigate the potential advan-

tages of models based on quantile regression (QR) for addressing these issues, with

a particular focus on willingness to pay-type data. We gather analytical arguments

showing how QR can tackle these issues. We show by means of a Monte Carlo

experiment how censored QR (CQR)-based methods perform compared to standard

models. We empirically contrast four models on flood risk data. Our findings

confirm that selection-censored models based on QR are useful for simultaneously

tackling issues often present in observational data.

Keywords: Censored Quantile Regression; Contingent Valuation; Flood; Monte Carlo

Experiment; Quantile Regression; Selection Model; Willingness to Pay

† The project leading to this publication has received funding from the French government under the

“France 2030” investment plan managed by the French National Research Agency (reference: ANR-17-

EURE-0020) and from Excellence Initiative of Aix-Marseille University - A*MIDEX. We thank OT-Med

(ANR-11-LABEX-0061), Riskemotion (ANR-08-RISKNAT-007-01) and GREEN-Econ (ANR-16-CE03-
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1 Introduction

Empirical research in agricultural and resource economics frequently relies on observational

data, given that experimental data may either be unavailable for ethical or practical

reasons or incompatible with the issue considered. Nature-based data, like quantities

or numbers of events, are obtained through the relevant monitoring networks. Human-

induced data rely on individual choices and are obtained through surveys, economic

markets, or non-market valuation methods that elicit willingness to pay (WTP) for various

non-market goods and services. Whatever the origin of these data, they are then analyzed

using statistical models to help inform private or public decision-makers by identifying

the determinants of the dependent variable of interest.

Effective modeling, however, needs to take several statistical issues into account. First,

there is the treatment of censored data, from below or above, for prices, quantities or

numbers of events. Second, the impact of individuals’ characteristics on the dependent

variable is potentially heterogeneous, which may bias estimates. Third, the variance of the

variable of interest is likely to be non-independent of some determinants, such as size or

income, which generates heteroskedasticity. Fourth, there can be outliers and/or extremely

large values related to natural or human factors. Fifth, the selection (or self-selection)

issue can bias the results and invalidate statistical inference if it is not the result of a

random process. Quantile regression (QR)-based models, which estimate the impact of

explanatory variables on conditional quantiles, can help tackle these issues. Yet despite the

importance of observational data (and non-market valuation studies), and the increasing

use of quantile-based methods, we lack a systematic analysis of their performances in

presence of censoring and selection.

We propose to fill this gap by comparing the performances of censored QR (CQR)

models and standard censored models, both with and without selection. First, we gather

analytical arguments showing how QR-based models can tackle the above-mentioned

statistical issues associated with observational data, with a particular focus on WTP-type

data. Second, we carry out a Monte Carlo (MC) experiment especially designed to include

heterogeneity, censoring and selection in order to compare the statistical performances

of the four models in a controlled framework. Finally, we apply these methods to real

data from a French contingent valuation (CV) survey on reducing risks associated with

flooding.

Our results confirm the advantages of selection censored models w.r.t. standard

censored estimates for analyzing observational data. The MC experiment shows that they

are less impacted by heteroskedasticity, less biased and more efficient. However, results

are mixed on the improvements from CQR estimates over standard censored estimates.

Applying models with selection to the flood risk survey confirms their superiority in

accounting for motivations for participating in the valuation exercise, while CQR models

reveal a strong heterogeneity of coefficients across the conditional distribution.
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Our paper contributes to the methodological literature on the treatment of censored

observational data (including those elicited with non-market valuation methods) in two

main ways. First, CQR has been used in various applications for years to account

for null data either observed (like vegetable demand; Gustavsen and Rickertsen, 2006;

local precipitation; Friederichs and Hense, 2007; agricultural surface areas; Motamed,

McPhail, and Williams, 2016) or revealed (like food safety; Lagerkvist and Okello, 2016).

All find heterogeneity in the relationships between the dependent variable and some

of the explanatory variables, confirming the interest of using QR-type approaches over

standard approaches. However, although the selection issue is likely to arise, only one

article accounts for it in QR modeling (Arellano and Bonhomme, 2017a; to explain

wage inequality). Second, despite their numerous advantages, QR applications on choice

modeling using WTP as dependent variable are still rare, although on the increase. One

article alone applies CQR to CV data with zero WTP and finds significant effects (in

particular for income) on WTP, whereas Tobit-like models indicate non-significant effects

(Krishnamurthy and Kriström, 2016). However, the article does not distinguish valid zero

WTP from non valid (i.e. protest) zero WTP. Protest behavior is typically a self-selection

process that needs to be accounted for, but we are not aware of any WTP study that has

considered it in connection with QR methods. Our study helps fill these gaps by comparing

the properties of the four models (censored and CQR, with and without selection), first

through an MC experiment and then on real WTP data. Incidentally, we also propose

numerical improvements to Arellano and Bonhomme (Arellano and Bonhomme, 2017a)

estimator for the CQR model with selection, that allows computation time to be divided

by a factor of one hundred on average without significant lack of precision.

2 Quantile regression analysis of censored data with

selection

The reasons why (C)QR may perform better than standard models in tackling issues

arising from censored data with selection are given below, followed by a specific focus on

WTP data.

2.1 Advantages of QR-based methods for observational data

First, QR-based methods are only one of several statistical methods (like nonparametric

estimations, latent class, hybrid or random parameter models) that allow for heterogeneity

in the coefficients. Each coefficient of a QR corresponds to the coefficient of a regression in

which an explanatory variable interacts with an unobserved latent variable that influences

the position of observations in the conditional distribution of the dependent variable. It

therefore offers a more comprehensive view of the relationship between the dependent

variable and the covariates, since the covariates are allowed to have a different impact

3



at each quantile of the conditional distribution of the dependent variable, not only at

the mean (Alsayed et al., 2020). This can be useful: for instance, in their CV study,

it is only through QR that Furno, Verneau, and Sannino (2016) manage to detect the

effect of hypothetical bias on the tails of the distribution. Although QR accounts for

unobserved heterogeneity, it is not a total substitute for latent class, hybrid or random

parameter models, which account for preference heterogeneity (Ben-Akiva et al., 2002;

Boxall and Adamowicz, 2002; Nahuelhual, Loureiro, and Loomis, 2004). The source of

the heterogeneity that QR accounts for is, by definition, unobserved, and various sources

may be at play.

Second, QR is able to capture the scale shift effects due to heteroskedasticity and

reveals how they affect the marginal effects at a given conditional quantile of the dependent

variable. Therefore, QR allows us to interpret heteroskedasticity as a special case of

heterogeneity. For instance, the scale effect of size or income leads to heterogeneity of

the size or income coefficient along the conditional distribution of the dependent variable.

In addition, QRs are more robust than ordinary least squares (OLS) regressions to the

presence of outliers, fat tails and to non-normal errors (Powell, 1986; O’Garra and Mourato,

2006; Huang and Chen, 2015). Moreover, although OLS is more efficient than QR when

the errors are homoskedastic and normally distributed (according to the Gauss Markov

theorem), empirical evidence suggests that QR tends to provide more efficient estimates if

these assumptions are not met (Hung, Shang, and Wang, 2010; Deaton, 2018).

Third, the presence of censoring of the dependent variable is frequent in observational

data, and occurs from below, above or both; and in 0 or any other value. Examples are

food or energy consumption, agricultural or natural resource production, meteorological

or physical measurements, or limits for insurance coverage, durations or capacities. This

censoring induces non-linearities in the relationship between the dependent variable and

the explanatory variables. OLS regressions are known to be biased in this case (Amemiya,

1984), calling for the use of specific models (like the Tobit model when censoring is from

below in zero) to properly account for censoring. Although QRs have several advantages

over OLS regressions, they also lead to biased estimates, so that CQRs still need to be

used to properly deal with censoring (Powell, 1986; Kowalski, 2016).

Fourth, (self-) selection is often an issue in empirical applications if statistical inference

is based on non-random samples. If the sample is not random with respect to observable and

unobservable characteristics, ignoring selection leads to biased estimates and invalidates

inference (Heckman, 1979). One solution to the selection issue is using multiple imputation

for non-selected observations, which Pennington, Gomes, and Donaldson (2017) find

outperformed the Heckman selection model in an MC experiment. But the gold standard

in the literature remains the Heckman model, which considers sample selection as a type of

omitted-variable bias and adjusts the OLS regression for the probability of being selected

in the sample. Recently, Arellano and Bonhomme (2017b) review recent proposals dealing

with sample selection in QR models and Arellano and Bonhomme (2017a) propose a
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model that can be adapted to account for censoring as well.

The main difficulty in applying QR-based models is interpreting the coefficients. (C)QR

results express how the coefficients vary, not along the marginal distribution, but rather

along the conditional distribution. Hence, the estimates capture the marginal effect of

each observed characteristic on the specific quantile of the dependent variable conditional

on these characteristics: it is not heterogeneity across the distribution of the dependent

variable that is accounted for, but heterogeneity across the distribution of the unobserved

determinants of the dependent variable.1

2.2 The case of WTP-type data

Stated preference methods used to elicit WTP rely on hypothetical surveys that ask for the

fraction of the disposable income that compensates for the change in utility proposed in a

hypothetical scenario. WTP-type data perfectly match the observational data framework

above and would also benefit from CQR-based models for several reasons.

First, self-selection is due to non-response behavior in the elicitation step, when

respondents either refuse to give a WTP or give a WTP that does not correspond to their

genuine value for the good proposed. Non-response may be a reaction to:

• the principle of the interview (Chen and Qi, 2018) or of a policy intervention (Wu,

Chen, and Liou, 2017), for ethical reasons for instance;

• the subject of the survey: the respondent may feel that it should be someone else’s

responsibility (Pennington, Gomes, and Donaldson, 2017), or may have extensive

knowledge of / interest in the subject and thus judge the information given to be

not accurate enough for him/her to set a WTP;

• the methodology / characteristics of the survey (Meyerhoff and Liebe, 2008): the

payment vehicle (Chen and Qi, 2018), the way it is conducted, or insufficient

information on the good;

• strategic behavior like free-riding or ensuring provision of the good (Strazzera et al.,

2003; Wu, Chen, and Liou, 2017; Chen and Qi, 2018).

The first set of reasons is individual-specific, and is founded on beliefs or behaviors

unrelated to the survey itself. Whatever its topic, non-response would represent a protest

response from these individuals. The second set is good-specific: if the same survey

1Some interpretations consider, for instance, that respondents with high WTP are more likely to

take into account their resources, attitudes and behaviors, whereas respondents with low WTP may be

more affected by budget constraints than by individual preferences (O’Garra and Mourato, 2006; Viscusi,

Huber, and Bell, 2012). In our opinion, the heterogeneity of the marginal effects should not be interpreted

as heterogeneity across income groups or preference groups. Resources and preferences are observed

(although imperfectly for preferences), while the heterogeneity revealed by (C)QR is heterogeneity across

the unobserved determinants of the dependent variable.
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setting featured another good, these respondents might give a WTP. The third set of

reasons is survey-specific: in a different setting, these respondents might express a different

(and potentially positive) WTP for the same good. The fourth set is likely to result

from combined individual, good and survey characteristics: this combination will lead

to WTP lower or higher than the genuine WTP. The reasons underlying non- response

are generally identified through debriefing questions after the valuation task, or through

attitudinal questions to all respondents.2 Consequently, when non-response arises, the

statistical modeling of WTP data should account for the self-selection process, as for other

observational data.

Second, censoring is from below and in zero, leading to WTP referred to as “valid”

null WTP that does not correspond to non-response behavior. There are three main

reasons: a null change in the utility function of the respondent, so that the corresponding

compensating income is truly null; a positive change in the utility function, but for which

the budget constraint of the respondent does not allow the expression of a positive WTP;

a negative change in the utility function, for which the WTP elicitation format does not

allow the expression of the corresponding negative WTP.

While most of the goods assessed with stated preference methods are very unlikely to

induce a decrease in utility, there are several exceptions, like road speed reductions (Scarpa

and Willis, 2006), closure of an airport or protection of privately owned forest (Kriström,

1997), preservation of some wildlife species, like wolves (Broberg and Brännlund, 2008),

or development of wind farms (Gudding et al., 2018). Consequently, there is the question

of whether negative WTP should be allowed in the statistical modeling (Carson and

Hanemann, 2005). If yes, zero WTPs stand as negative WTPs that truly represent a

negative utility change but are censored at zero due to an observability issue, and the

underlying distributional assumptions of the Tobit model are fulfilled (Sigelman and

Zeng, 1999). If no, zero WTPs are strictly null WTP, i.e. ‘corner solutions’ under an

economic rationale that could be modeled separately (a budget constraint or change in

utility associated with the good). Although it is standard practice in the literature to

consider ‘censoring’ and ‘corner solution’ as strictly equivalent (see Krishnamurthy and

Kriström, 2016, footnote 3 for instance), the interpretation of the results of a censored

regression differs (see the censored model section below).

Third, the relationships between non-zero WTP and its determinants are usually

heteroskedastic, especially regarding the income variable. As income increases, WTP is

less and less bounded by the budget constraint and the heterogeneity of preferences leads

to greater dispersion of WTP values. This kind of feature has already been observed, see

for instance the Engel Curves between income and food expenditure in Koenker (2005).

2It is indeed admitted that non-answer behavior and the expression of a valid WTP both involve

economic and non-economic factors. Hidden behind the former may be positive WTP and behind the

latter, motivations other than purely economic (Meyerhoff and Liebe, 2006; Grammatikopoulou and

Olsen, 2013; Chen and Qi, 2018).
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Fourth, WTP from CV studies may contain many low and/or very high WTPs because

no actual out-of-pocket payment is required for the provision of the hypothetical good

or service and because the valuation task is difficult. This will hinder the estimation

of conditional mean WTP, because strong influence from the upper tail of the WTP

distribution potentially leads to mean and median WTPs that significantly differ from

each other.

Overall, the following will focus on censored and CQR models, and will explicitly take

account of the selection issue in the modeling.

3 Statistical models and estimation procedures

We present the models used both in the MC experiment and the empirical application,

relying on conditional means and on conditional quantiles for the specification accounting

for censoring and the specification accounting for both selection and censoring.

To cover various types of observational data, the dependent variable is considered

continuous, but the statistical models we propose can be applied to non continuous data,

with a bivariate Probit or a binary quantile regression with selection for instance (see also

Strazzera et al., 2003; for a double-bounded dichotomous choice model with selection) or

with a quantile count model (Harding and Lamarche, 2019).

3.1 Models with censoring

3.1.1 Censored model

A censored model that accounts for censoring of the dependent variable can be written

as: 
Y ∗i = x′iβ + ei

Yi = Y ∗i if Y ∗i > c

Yi = c if Y ∗i ≤ c

(1)

where Y ∗i is a latent variable (and Yi its observed counterpart) corresponding to the

genuine unobserved Y u
i , xi is a matrix of explanatory variables, β a vector of parameters,

ei ∼ N(0, σ2
e) is a random term, and c the censoring point from below (the case of censoring

from above is straightforward). Under the parametric assumption Y ∗i ∼ N(x′iβ, σ
2
e), the

likelihood function of this model is:

(2) L(β, σ;Yi, xi) =
n∏
i=1

(
1

σe
φ

(
Yi − x′iβ

σe

))I(Yi>c)(
Φ

(
c− x′iβ
σe

))I(Yi=c)
with φ(.) the probability density function of the standard Normal distribution, Φ(.)

the cumulative distribution function (cdf) and I(.) an indicator variable.
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Although this model is simple to implement, it is sensitive to incorrect assumptions

regarding the error term distribution like homoskedasticity and normality (Wooldridge,

2010). In addition, as mentioned before, this model assumes that the latent variable

Y ∗ corresponding to the genuine unobserved Y u can be negative, which is not true for

consumption, production, quantities, prices, or a CV scenario that rules out negative WTP.

Although this issue is often neglected in empirical applications, appropriate procedures

would use models based on naturally non-negative distribution like Poisson- lognormal- or

Weibull-based regressions (Sigelman and Zeng, 1999; Bateman et al., 2002) and, when 0

corresponds to a ‘corner solution’, would explicitly model the corresponding decision that

leads to censoring (Maddala, 1992; Wooldridge, 2010). Moreover, interpretation of the

parameters (and computation of marginal effects) are impacted by whether the censoring

is due to data observability or to a ‘corner solution’. In the former case, the coefficient

provides the effect of the corresponding explanatory variables, whereas in the latter it is a

non-linear function of the coefficients (Wooldridge, 2010; Chernozhukov, Fernández-Val,

and Kowalski, 2015).

3.1.2 Censored Quantile Regression model

Following Koenker (2005)’s presentation of the conditional QR model, the conditional

distribution of a random variable Y is denoted FY |X(Y |x), where X is a set of random

explanatory variables. The conditional quantile Qτ is defined as:

(3) Qτ (Y |x) = inf(e : FY |X(e|x) ≥ τ) = F−1(τ |x)

The CQR model was introduced by Powell (1986), and one of its main advantages lies

in avoiding the strong parametric assumptions of the Tobit model. The censoring is dealt

with using the property of equivariance of quantile functions to monotonic transformations

(like censoring). This means, for a linear τ -quantile function in x, and a fixed censoring

point c:

(4) Qτ (Yi|xi) = Qτ (max(Y ∗i , c)|xi) = max(Qτ (Y
∗
i |xi), c) = max(c, x′iβτ )

where βτ is a vector of k parameters associated with the τ -quantile. The CQR estimator

of βτ for a random sample (Yi, xi)i=1,...,n is obtained by solving:

(5) min
βτ

n∑
i=1

ρτ (Yi −max(c, x′iβτ ))

where ρτ is the check function defined by:

(6) ρτ (u) = u(τ − I(u < c))

For a given explanatory variable xk, we interpret the coefficient βτ,k as the change in

the quantile of order τ of the conditional distribution for a marginal change in xk. The
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CQR model allows for coefficients’ heterogeneity, and Powell (1986) shows that, under

some regularity conditions, it is consistent and asymptotically normal whatever the error

distribution, which is not true for censored models. As previously, the nature of the

censoring (observability or ‘corner solution’) would affect the computation (Chernozhukov,

Fernández-Val, and Kowalski, 2015; Kowalski, 2016). In addition, the interpretation of the

partial derivative often requires considerable care as an individual may fall into a different

conditional quantile after a marginal change in an explanatory variable, especially when

discrete (Koenker, 2005; Cameron and Trivedi, 2010).

Computational difficulties have long prevented an extensive use of the CQR model,

but improvements in estimation methods are making things easier. Fitzenberger (1997)

state that most algorithms for CQR tend to perform poorly with high censoring and small

sample sizes (less than 1000), an issue for observational-type and non-market valuation

data. However, Chernozhukov and Hong (2002) propose an estimator and compare it with

that proposed by Buchinsky and Hahn (1998) and the Powell (1986) estimator, under a

specification with high censoring (45%) and low sample sizes (n=100, 400). Their results

show that their algorithm perform better in terms of root-mean-square error (RMSE)

and similarly in terms of mean bias (MB). Koenker (2008) review and compare some

recent CQR estimators that allow for random censoring (Portnoy, 2003; Peng and Huang,

2008) to the Powell (1986) estimator (with the Fitzenberger, 1997’s algorithm). He shows

that for fixed censoring (the relevant issue in valuation surveys) these estimators do not

perform better than the older Powell (1986) estimator. Overall, the Chernozhukov and

Hong (2002) algorithm used with the Powell (1986) estimator is certainly the best existing

estimator for observational or WTP-type data, because it performs relatively well in

presence of both high censoring and small sample sizes.

3.2 Models with selection and censoring

Because participation may be non-random in the sample with respect to individuals’

characteristics, the latter need to be taken into account to derive valid inference on the

genuine unobserved Y u based on observed Y . We thus present below two models that

account for selection and censoring.

3.2.1 Censored model with selection

We consider a two-step process in which observations have to be selected before the

(censored) value of the outcome is observed. The first step - participation - is based

on technical or logical constraints, or relies on an individual decision (like consuming

a good or deciding to reveal one’s WTP). The second step decides the amount of the

outcome (crop surface area; Qualls et al., 2012) or of the WTP (Alvarez-Farizo et al.,

1999; Strazzera et al., 2003; Cho et al., 2008).
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The first step - participation - can be written as:
P ∗i = z′iα + ui

Pi = 1 if P ∗i > 0

Pi = 0 if P ∗i ≤ 0

(7)

where P ∗i is a latent variable corresponding to the decision to participate (and Pi its

observed counterpart), zi is a matrix of explanatory variables explaining participation, α

a vector of parameters, and ui ∼ N(0, σ2
u) is a random term.

The second step - Y observation - can be written as a censored model, but is now

conditional on participation:
Y ∗i = x′iβ + ei

Yi = Y ∗i if Y ∗i > c and Pi = 1

Yi = c if Y ∗i ≤ c and Pi = 1

Yi not observed if Pi = 0

(8)

We estimate this process as a Heckman selection model with a censored Y equation,

assuming a correlation between the two error terms ui and ei. We choose a bivariate

normal distribution N2(z
′
iα, x

′
iβ; Σ) where Σ is the variance covariance matrix of (ui, ei)

with covariance ρσe and σ2
u ≡ 1 (a standard assumption, see Wooldridge, 2010):(

1 ρσe

ρσe σ2
e

)

Under these parametric assumptions, the likelihood function of this process is:

L(.) =
∏
P=0

(1− Φ(z′iα))×
∏

P=1,Y=c

Φ2(z
′
iα,−x′iβ/σe;−ρ)

×
∏

P=1,Y >c

(
1

σe
φ

(
Yi − x′iβ

σe

))
× Φ

(
z′iα + ρ(Yi − x′iβ)/σe

(1− ρ2)0.5

)(9)

with Φ2(., .; ρ) the cdf of a standard bivariate Normal distribution with correlation

ρ. Alternative types of modeling, for use if Y ∗ cannot be negative, have already been

proposed in the censored model.

The estimation procedure recommends that some z are not in x (known as exclusion

restriction), to guarantee the identification of all parameters although the non-linearities

of the inverse Mills ratio are technically sufficient (Wooldridge, 2010).

3.2.2 CQR model with selection

We adopt the recent approach correcting for sample selection in QR models proposed by

Arellano and Bonhomme (2017a), adapted to account for censoring.
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The rationale of the first step - participation equation P - and the second step -

observation equation Y - as well as notations are similar to the censored model with

selection (see equations (7-8)). We assume however that z = (w, x) strictly contains x as in

Arellano and Bonhomme (2017a), where w stands for a set of explanatory variables, which

constitutes a stronger assumption than the standard exclusion restriction in selection

models. We define (u, e) as following a bivariate normal distribution, and model it using

a specification with uniform standard marginals and rectangular support.

Let p(z) = Pr(P = 1|z) be the corresponding propensity score, and assume Pr(p(z) >

0) = 1. With QR models, it is more convenient to use a parametric copula for the

bivariate specification, because the copula is equivariant to monotonic transformations,

like quantile transformations. We assume as in Arellano and Bonhomme (2017a) that the

unconditional copula of (u, e) is indexed by a parameter vector θ. For example, using the

normal specification, the unconditional copula of (u, e) may be defined as:

(10) Cu,e(τ, p; θ) = Φ2(Φ
−1 (τ) ,Φ−1 (p) ; θ)

where Φ2 is the bivariate normal cdf and Φ−1 is the inverse of the standard normal cdf.

It follows that we can define the conditional copula Gx(·,·;·) allowing us to compute the

next conditional probability (the key to the method) as:

Pr(Y ∗ ≤ x′β (τ) |P = 1, Z = z) = Pr(u ≤ τ |e ≤ p(Z), Z = z)

= Cu,e(τ, p (z) ; θ)/p (z) ≡ Gx(τ, p(z); θ)
(11)

Let Fu,e|X(y, v) ≡ FX(y, v) be the conditional cdf. Suppose that FX is strictly increasing

with respect to u, and that conditional cdf FY ∗|X(y, x) and its inverse are strictly increasing.

We assume the τ -quantile of outcomes of participants given z to be linear, and define the

censored conditional quantile model as:

(12) Qτ (max(Y ∗, c)|P = 1, z) = F−1max(Y ∗,c)|P=1,z(τ, z) = x′βG−1
x (τ,p(z,α);θ)

Estimation is in three steps, partly relying on Arellano and Bonhomme (2017a)’s

procedure, and partly on numerical improvements introduced to divide the computation

time by about 100.

Arellano and Bonhomme (2017a)’s procedure

Let (Yi, Pi, zi), i = 1, ..., N , be an i.i.d. sample, with zi ≡ (wi, xi), which strictly contains

x, so w are the excluded covariates.

1st step: Maximum likelihood. Arellano and Bonhomme (2017a) use a maximum likelihood

approach to obtain α̂, a consistent estimate of the vector of parameters of the participation

equation, α. It will be used to define the empirical propensity score that will feature as an

instrument for the Generalized Method of Moments (GMM) estimation in the next step:

(13) p̂(z, α) = P̂r(P = 1|z) = Φ (z′α̂)
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2nd step: Grid search method. They use the GMM applied to the empirical version of the

theoretical conditional moment restriction:

(14) E[1(Y ≤ x′β)−Gx(τ,Φ (z′α) ; θ)|P = 1, Z = z] = 0

with 1(.) the indicator function, in order to obtain a consistent estimator of θ, the copula

parameter vector of (u, e):

(15) θ̂ = arg min
d∈D

∥∥∥∥∥
N∑
i=1

L∑
l=1

Pip(zi, α̂)
[
1
(
Yi ≤ x

′

iβ̂τ̃l (d)
)
−Gx(τ̃l, p(zi, α̂); d)

]∥∥∥∥∥
2

where τ̃1 < τ̃2 < ... < τ̃L is a finite grid on (0, 1), || · ||2 is the Euclidean norm, Gx(·,·;·)
the conditional copula that measures the dependence between e and u, which is the source

of sample selection bias, p(zi, α̂) are instrument functions with dim(p(zi, α̂)) ≥ dim(θ),

and

(16)

β̂τ̃l (d) = arg min
b∈B

N∑
i=1

Pi

[
Gx(τ̃l, p(zi, α̂); d) (Yi − x′ib)

+ −Gx(τ̃l, p(zi, α̂); d) (Yi − x′ib)
−
]

where β̂τ̃l (d) is the CQR coefficient associated with quantile τ̃l, (Yi − x′ib)+ = max(Yi −
x′ib, 0) and (Yi − x′ib)− = max(x′ib− Yi, 0).

3rd step: Rotated Quantile Regression. Given α̂ and θ̂, for any given τ ∈ (0, 1) they

compute β̂τ , a consistent estimator of the τ -th quantile regression coefficient:

(17) β̂τ = arg min
b∈B

N∑
i=1

[τ(Y ∗i − x′iβ)+ + (1− τ)(Y ∗i − x′iβ)−]

Here τ is replaced by the selection-corrected individual-specific percentile rank.

Improvements to Arellano and Bonhomme (2017a)’s procedure

Because of the MC experiments, it is crucial to shorten computation time, especially in

the second step which accounts for most of it (Arellano and Bonhomme, 2017b). First, we

optimize the code by compiling the most computation-intensive part. Then, we replace

the gridsearch method of Arellano and Bonhomme (2017a) and estimate θ̂ by a minimizer

algorithm, the estimate being denoted by θ̂m. The objective function for estimating θ̂

is not continuous, due to the presence of the indicator function 1(.), which makes it

generally non-convex. In practice, when we are in low-dimensional θ (i.e., dim(θ) < 3, in

our case dim(θ) = 1), the grid search method may be preferable, which is why the initial

GMM criterion is built on a double grid with respect to both θ and τl, the corresponding

percentile rank. However, increasing the density of the grid on τl leads to a function

locally convex on its support and even globally convex in almost all cases. We use this

as a trade-off between precision and computation time and estimate θ̂m by maximum

likelihood without significant lack of precision w.r.t. a grid search method with a very

fine grid on θ (see Figure 1 for an illustration of the change in computation time for two

grid densities).
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4 Monte Carlo experiment

To characterize the empirical properties of the four models, we carry out an MC experiment

especially designed to include censoring, selection and heterogeneity (modeled via a

heteroskedastic error term). Specifications that explicitly express the heterogeneity of

the coefficients as a function of the quantile (for instance β(τ) = exp(τ)) are possible

(Hoshino, 2013), but their interpretation would be less intuitive.

4.1 Design of the Monte Carlo experiment

The data-generating process (DGP) consists of a participation equation, and a linear

specification with a censored dependent variable Yi, that can also be interpreted as a

WTP. The dependence between the two equations is accounted for through the correlation

parameter ρ of the bivariate distribution of the error term, and the censoring point is set

to 0 without loss of generality.

The participation equation is:

(18) P ∗i = α0 + α1zi,1 + α2zi,2 + ui

where:

• zi,1 is a standard log-normal continuous variable lnN(0, 1) that stands for the income

variable, for instance.

• zi,2 is a standard normal variable N(0, 1).

• ui is i.i.d standard normal.

The outcome equation is:

(19) Yi = max(β0 + β1zi,1 + β2xi,2 + β3x
2
i,3 + ei, 0)

where:

• zi,1 is the same variable as in the DGP equation, with a location shift effect on Y . A

scale effect is also accounted for in the error term ei below: respondents with higher

zi,1 are also likely to have higher variance in Y .3

• xi,2 is a standard normal variable N(0, 1).

• xi,3 is a standard uniform variable U(0, 1). This variable is squared in the DGP to

allow for non-linearities (Fan and Liu, 2016).

3In the revealed and stated preference frameworks, this corresponds to an income effect on WTP:

respondents with high incomes are more likely to have higher WTPs.
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• ei is an error term that covers two different heteroskedasticity intensities j (j = 0, 1):

ei = (1 + γjzi,1)vi(20)

where vi is i.i.d standard normal, γ0 = 0 and γ1 = 0.8.

The first case corresponds to homoskedasticity, while the second produces linear

heteroskedasticity in zi,1, mimicking the scale effect of income.

Finally, the variance covariance matrix that accounts for the bivariate normal distribu-

tion between the error terms of the participation and the outcome equations is:(
1 ρσe

ρσe σ2
e

)

where correlation ρ stands for independence (0) and positive dependence (.5); negative

dependence is not accounted for since it is obviously symmetric with positive dependence.

The heteroskedasticity of the error term leads to heterogeneity in the relationship between

the quantiles of the conditional Y distribution and the covariates. The marginal effect

of a covariate on the quantile covariates affects both the location and the scale of the

dependent variable:

(21)
∂Qτ (Y |z1)

∂z1
= β1 + γjF

−1
u (τ)

where F−1u (τ) is the inverse cdf (i.e. quantile function) of the error term distribution.

We use several specifications for the DGP, varying the sample size n (300 and 1000),

the participation rate p and the censoring rate c. We set α1=2 (to mimic the positive

relationship between income and participation; Meyerhoff, Morkbak, and Olsen, 2014),

and α2=-2 (to mimic a negative relationship with participation). We set the participation

rate p based on α0 (100% when α0=6 and 80% when α0=-0.2).

We finally set β1=2 (to mimic a positive relationship with Y, potentially between

income and WTP), β2=-2 (to mimic a negative relationship with Y), and β3=1 (to mimic

a positive quadratic relationship with Y), and control for the censoring rate c based on β0

(0% when β0=5 and 40% when β0=-2).

Overall, we estimate 4 models - Tobit without selection and with (Tobit-S), CQR

without selection and with (CQR-S) - and for each of them, we simulate 5000 samples

for each of the 2 sample sizes x 2 heteroskedasticity intensities x 2 censoring rates x 2

correlations x 2 participation rates = 32 specifications. We use the three dimensional

vector [0.25, 0.50, 0.75] to analyze the conditional quantile estimations.

For the CQR model, computations are performed with R and the quantreg (Koenker,

2015) and AER (Kleiber and Zeileis, 2008) packages (codes available upon request). The

codes are adapted from the est_cqrl function available in the Counterfactual package

for R.
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For the CQR model with selection, the optimization of the code leads to a two-thirds

reduction in computation time. Then, we look for the best trade-off regarding the grid

density on τl and the convexity of the objective function (15). A few trials show that,

given the local convexity of the resulting objective function for estimating θ̂, a denser

grid on θ than the default value found in the Matlab algorithm proposed by Arellano and

Bonhomme (2017a) (i.e. 0.02 instead of 0.1) is sufficient for a minimizer algorithm to be

used and to θ̂m. This leads to a computation time 15 to 30 times shorter (depending on

the sample size in the MC specifications) than the grid search method. Overall, for the

MC experiment, we estimate that computation time is divided by about 100 on average.

In practice, the best trade-off needs to be determined, because the stepsize for the grids

with respect to θ and τl may be very sensitive to the parametric model used for the two

equations for P and Y respectively.

4.2 Results of the Monte Carlo experiment

The experiment provides extensive information, but we focus on the MB and the RMSE

of the outcome equation (see details in Appendix A for reviewers’ use only). Our aim

here is to determine whether the models can recover the outcome’s DGP when there are

potential selection and censoring issues which would affect marginal effects (whatever

they are) as well as mean and median Y. Table 1 shows these statistics for the slope

coefficients, the 2 participation rates, the 2 heterogeneity intensities, the two correlations

ρ, censoring and n = 1000 and censoring c=40%, but we also comment on the results not

shown (see all the specifications in Appendix B for reviewers’ use only). To make results

clearer, cells are highlighted in gray when the MB differs by less than 10% from the true

parameter. For RMSE, cells are highlighted in gray when the RMSE is less than .1, as a

rule-of-thumb measurement of the error of each model (see Ferrini and Scarpa, 2007; for

similar choices).

[PLEASE INSERT TABLE 1 ABOUT HERE]

Note first that we find a negative MB for β1 and β3, and a positive MB for β2, up to

10% for the former and up to 40% for the two latter. Whatever the specifications, MB

is generally larger for the models not accounting for selection than those accounting for

it, as expected. RMSE values are also higher in the models without selection. Finally,

regarding the two CQR models, we generally find higher RMSE and MB for the 25% and

75% quantiles. This can be explained by two phenomena. Due to censoring, we have less

information at the bottom of the conditional distribution, which causes a loss in efficiency

(in particular for the 25% quantile). In addition, we are considering MB on coefficients,

not on marginal effects, which differ a lot in presence of heteroskedasticity for quantiles

other than the 50% quantile (see equation (21)) and depend on the type of censoring.
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Let us now consider the effect of sample size (see the specifications with n = 300 in

Appendix B for reviewers’ use only). As expected, there is no significant change in MB,

and RMSE decreases with sample size for all models and all specifications (except for the

75% quantile in both CQR models). Regarding censoring (see Appendix B), we observe

consistently that it increases MB and RMSE for all models and all slope coefficients, which

was also expected. This effect is stronger with the two models that do not account for

selection.

We now turn to the effect of heteroskedasticity on MB and RMSE (see Table 1) for n

= 1000 and a censoring rate of 40%. We observe an increase in MB for β1 and β2, more

marked in the two CQR models, and a less clear increase in β3. RMSE is consistently

found to increase slightly with heteroskedasticity, whatever the specifications, the models

and the slope coefficients.

Finally, let us consider the impact of introducing selection. MB and RMSE slightly

decrease ceteris paribus in the Tobit and CQR models when selection is introduced. This

is not observed in the Tobit-S and CQR-S models, where a slight tendency to increase

is sometimes found. Note however that both MB and RMSE remain much lower in the

selection models than in the non-selection models.

Overall, accounting for selection in the models has an undeniable impact: the Tobit-S

and CQR-S models perform better than their counterparts whatever the specifications.

In presence of selection, Tobit-S seems to perform better than CQR-S, in terms of both

MB and RMSE. These results obviously hold with any type of data supporting censoring,

selection and heteroskedasticity, but the next section compares the four models to actual

data from a CV study on flood risk.

5 Empirical application

We use data from a CV survey administered in Southeastern France between 26 April and

30 June 2012 via individual face-to-face interviews with respondents both having and not

having experience of floods. Decreasing the impact of floods is a major public concern

(Reynaud and Nguyen, 2016) and catastrophic river risings or flash floods regularly hit

the front pages.

5.1 Method and data

5.1.1 Study design

The questionnaire included eight modules (housing, risk perception, hypothetical monetary

choices, personality, Post Traumatic Stress Disorder (PTSD), flood-specific issues, socio-

demographic factors and CV scenario). However, we only present in detail the findings

relevant to this article: respondents’ WTP to reduce their vulnerability and exposure to

flooding.
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A scenario was proposed to determine respondents’ willingness to contribute to the

funding of city-level protective devices to assess both the tangible and intangible /

psychological gains from prevention and any the corresponding WTP (see Appendix C for

the exact wording).4

The payment vehicle is a voluntary contribution to a Flood Management Fund. After

careful consideration of the various existing elicitation formats, we used the circular

payment card (CPC) for its overall performance (Chanel, Makhloufi, and Abu-Zaineh,

2017; Champonnois, Chanel, and Makhloufi, 2018).5

5.1.2 Data

The empirical analysis is based on a sample of 599 respondents interviewed at home

face-to-face by a specialized survey institute. Four municipalities in Southeastern France

were chosen for their varying degrees of exposure to flood risk: at no risk of flooding, at

potential risk of flooding, flash-flooded 20 years before the survey (37 deaths and four

missing), and two years before the survey (23 deaths, 12 missing). The respondents

interviewed had to meet the following inclusion criteria: be older than 18 at the time of

the survey, live in one of the four municipalities and, for the two flooded cities, have been

physically present and over 18 when flooding occurred.

We consider as protest responses respondents who refuse to contribute to the Flood

Management Fund for one of the following reasons: “We need to be sure that everyone

pays”, “I do not have enough information to choose an amount”, “I am not the one

who should pay”, “I do not want to pay more”. Overall, 264 (44.07%) are classified as

protesters, 93 (15.53%) give a valid null WTP, and 242 (40.40%) give a strictly positive

WTP.

Table 2 presents the summary statistics. The average age of the sample is 51.3; 55.1%

are female; 36.2% have at least one child at home; 41.8% have at least a high school

certificate; monthly mean respondent income is e1,422; monthly mean household income

is e2,106, and 47.6% are homeowners.

[PLEASE INSERT TABLE 2 ABOUT HERE]

5.2 Results

Our choice of WTP determinants is based on the main variables found in previous CV

surveys on flooding (Department for Environment Food & Rural Affairs, 2005; Hung,

2005; Abbas et al., 2014; Joseph, Proverbs, and Lamond, 2015; Owusu, Wright, and

4We also used a second scenario proposing a contribution to insurance against flood risk. It is not

presented here both for the sake of concision and because it makes negative WTP unlikely.
5Note that Carson and Groves (2011) conclude that, of the various existing elicitation formats, none

stands out as having better statistical and practical properties.
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Arthur, 2015: Kuo, 2016; Ren and Wang, 2016), and we choose to limit unobserved

heterogeneity by employing the same set of explanatory variables x to explain WTP -

even non-significant ones - in all four models (see Tables 3 and 4).

5.2.1 Models not accounting for selection

Regarding the Tobit results, all the explanatory variables have a significant effect. Income,

wealth, perceived probability of flood, and impatience have positive effects on WTP, which

is consistent with theory and argues for the validity of the CV survey. Being subject to

PTSD has a positive effect, which suggests that the psychological consequences from a

flood event have a significant impact on WTP.

[PLEASE INSERT TABLE 3 ABOUT HERE]

Some coefficients are less intuitive: for example, risk tolerance has a positive effect

on WTP, while having previous experience of flooding has a negative effect. The latter

may be explained by the fact that having experienced flooding in the past could cause

respondents to doubt the risk-mitigation efficacy of the protective action proposed or

believe they would be able to relive the same situation and pull through the exact same

way.

Regarding the CQR without selection, although the signs of the coefficients remain

similar to those obtained in the Tobit, the CQR model reveals a strong heterogeneity

of coefficients across the conditional distribution. For instance, the marginal effects of

income and wealth are increasing, which reveals a higher WTP variance for the richer

than for the poorer, a finding frequent in WTP studies (Notaro and De Salvo, 2010). This

scale effect is also observed for all other variables and tends to increase in magnitude

across quantiles.

Overall, we find clear signs of heterogeneity among the respondents, differing according

to the unobserved determinants of WTP (i.e. to their rank in the conditional WTP

distribution). Although it is difficult to determine what exactly is embedded in these

unobserved components (attitude to the survey, differences in sensitivity to hypothetical

bias, etc.), CQR shows how they can affect the relation between WTP and observed

characteristics.

5.2.2 Models accounting for selection

We use several exclusion restrictions, adding variables W to the set X of variables to

explain selection (i.e., non-protest), in order to guarantee identification and to be consistent

with the Arellano and Bonhomme (2017a) estimation procedure. These variables deal with

information regarding flood (Inform, NbrInfo and its square) and the place of residence

(3 dummy variables) which can reasonably be considered to influence the decision to
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participate. Only coefficients are computed and discussed hereafter, not marginal effects.

Results of the Tobit with selection are more or less similar to the standard Tobit for

the WTP equation, with the following exceptions: impatience and past experience of

flooding are no longer significant.

[PLEASE INSERT TABLE 4 ABOUT HERE]

The correlation ρ between the unobserved determinants of participation and WTP is

negative and very significant. This suggests that there is indeed a bias when not correcting

for selection. Since the correlation is negative, unobserved factors that make participation

more likely tend to be associated with lower WTP (and vice-versa).

Regarding the participation equation (i.e. on the probability of non-protesting),

respondents with high perceived likelihood of being flooded (ProbaFlood), who are familiar

with a large number of media for information about flood risk (NbrInfo2) or who are

impatient are less likely to participate. On the other hand, those who have PTSD or are

tolerant to risk are more likely to participate.

In the CQR with selection, as with the standard CQR, increased magnitude of effect

is observable for all variables, suggesting that all variables have a heteroskedastic effect.

Again, signs are similar, and the results regarding the selection equation are also similar

to those obtained for the Tobit, although those living in a recently flash-flooded place

(Draguignan) are more likely to participate.

6 Conclusion

This article confirms the advantages of selection censored models w.r.t. censored models

for analyzing observational data, especially CQR in presence of heteroskedasticity, first

through an MC experiment and second by applying selection models to a CV study on

flood-risk protection. Their use appears relevant with any data where an underlying

selection process is likely to be non-random and where heteroskedasticity and outliers

arise. Non-economic examples are the number of occurrences of an event or the quantities

consumed in fields such as agriculture, energy, climate, environment and health. Other

applications include economic data, whether directly observed on markets (prices, rates,

taxes), indirectly revealed (shadow prices), or stated in surveys (WTP). CQR models

should also have advantages for policy makers, providing a picture of how the effects of

WTP determinants are distributed across the population and not only on their conditional

mean, which can clearly be misleading.

There are a number of possible extensions to this work.

First, exploring the performances of the four models in the MC experiment on a

larger set of parameters would be easy, although time-consuming. Varying patterns of

heteroskedasticity, using different censoring, selection and correlation values or introducing
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interaction variables would help us assess their respective advantages and limitations.

Second, our initial intention was to test in the MC experiment how a heteroskedastic

Tobit (Messner, Mayr, and Zeileis, 2016) would perform w.r.t. CQR models in presence

of controlled heteroskedasticity. Because the Tobit model is known to be sensitive to

departure from the homoskedasticity assumption, accounting for it explicitly could be

expected to improve its performance. A heteroskedastic version of the censored models

we propose (with and without selection) can be obtained easily by replacing σe by σei ,

and expressing σei as a positively defined function of individual characteristics, whose

parameters are estimated. However, although we did obtain better MB and RMSE with

the heteroskedastic Tobit, we faced computational issues in estimating the model with

selection that prevent us from adding it to this article.

Third, we suggest a way, compatible with our modeling, to identify and account for

negative WTP, in the spirit of Gudding et al. (2018). Briefly, a first question asks the

respondent whether s/he considers that the good proposed decreases his/her welfare level.

If the answer is positive, s/he is asked his/her WTP to avoid deterioration; otherwise, s/he

is asked his/her WTP to benefit from the good. Then, the WTP is elicited as well as the

reasons for null WTP, to discriminate between true zero (no interest, budget constraint)

and protest. If a high enough share of respondents have a negative utility for the good,

two independent statistical models chosen among the four models we proposed can be

estimated, respectively on the positive and the negative WTP. The average predicted

WTP can be computed to properly account for gainers and losers, in cost benefit analysis

for instance. If the proportion is too low, a censoring selection model chosen from the two

we proposed, which allow for negative WTP, is estimated on the whole sample.

Finally, an interesting avenue of research is suggested by the fact that despite many

models can account for heterogeneity in the coefficients (QR-based, nonparametric, latent

class, hybrid or random parameter models), they have not been comprehensively compared

to date. A study comparing these models and defining the kind of heterogeneity accounted

for by each would be useful when choosing the proper model to analyze nature- or

human-based observational data, including non-market valuation studies.
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DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%

β1

p=100%, γ0 = 0, ρ = 0 MB -0.212 -0.113 -0.125 -0.119 -0.001 -0.044 -0.064 -0.037

RMSE 0.108 0.060 0.065 0.062 0.000 0.001 0.000 0.000

p=100%, γ0 = 0, ρ = 0.5 MB -0.212 -0.114 -0.125 -0.119 -0.002 -0.052 -0.038 -0.054

RMSE 0.108 0.060 0.065 0.061 0.000 0.001 0.000 0.001

p=100%, γ1 = 0.8, ρ = 0 MB -0.213 0.171 -0.196 -0.573 -0.119 -0.227 -0.200 -0.073

RMSE 0.111 0.128 0.102 0.227 0.020 0.024 0.010 0.001

p=100%, γ1 = 0.8, ρ = 0.5 MB -0.213 0.172 -0.194 -0.572 0.026 -0.154 -0.244 -0.305

RMSE 0.111 0.129 0.102 0.226 0.019 0.011 0.015 0.015

p=80%, γ0 = 0, ρ = 0 MB -0.185 -0.077 -0.092 -0.099 -0.001 -0.047 -0.067 -0.046

RMSE 0.095 0.042 0.049 0.052 0.000 0.001 0.001 0.001

p=80%, γ0 = 0, ρ = 0.5 MB -0.189 -0.087 -0.100 -0.105 -0.250 -0.053 -0.040 -0.056

RMSE 0.097 0.047 0.052 0.055 0.007 0.001 0.000 0.001

p=80%, γ1 = 0.8, ρ = 0 MB -0.19 0.228 -0.159 0.555 -0.120 -0.239 -0.214 -0.112

RMSE 0.101 0.165 0.085 0.220 0.021 0.027 0.012 0.002

p=80%, γ1 = 0.8, ρ = 0.5 MB -0.194 0.221 -0.167 -0.562 0.031 -0.159 -0.251 -0.334

RMSE 0.102 0.161 0.089 0.222 0.021 0.012 0.158 0.173

β2

p=100%, γ0 = 0, ρ = 0 MB 0.888 0.282 0.417 0.601 0.040 0.120 0.146 0.133

RMSE 0.444 0.146 0.211 0.303 0.001 0.004 0.005 0.005

p=100%, γ0 = 0, ρ = 0.5 MB 0.887 0.284 0.416 0.599 0.029 0.138 0.052 0.089

RMSE 0.444 0.146 0.211 0.302 0.001 0.005 0.001 0.002

p=100%, γ1 = 0.8, ρ = 0 MB 0.900 1.101 0.603 0.110 0.106 0.851 0.277 -0.313

RMSE 0.451 0.436 0.304 0.092 0.010 0.112 0.019 0.046

p=100%, γ1 = 0.8, ρ = 0.5 MB 0.899 1.097 0.598 0.109 0.065 0.863 0.103 -0.3712

RMSE 0.450 0.434 0.302 0.092 0.008 0.116 0.003 0.06

p=80%, γ0 = 0, ρ = 0 MB 0.787 0.205 0.315 0.492 0.037 0.125 0.160 0.150

RMSE 0.394 0.109 0.161 0.249 0.001 0.004 0.006 0.006

p=80%, γ0 = 0, ρ = 0.5 MB 0.768 0.188 0.296 0.469 0.044 0.132 0.058 0.095

RMSE 0.385 0.101 0.152 0.237 0.008 0.004 0.001 0.023

p=80%, γ1 = 0.8, ρ = 0 MB 0.805 0.989 0.496 0.019 0.104 0.855 0.313 -0.291

RMSE 0.404 0.392 0.252 0.061 0.010 0.114 0.025 0.040

p=80%, γ1 = 0.8, ρ = 0.5 MB 0.786 0.964 0.470 -0.008 0.054 0.837 -0.121 -0.355

RMSE 0.394 0.382 0.239 0.059 0.100 0.101 0.004 0.060

β3

p=100%, γ0 = 0, ρ = 0 MB -0.429 -0.142 -0.203 -0.285 -0.015 -0.067 -0.029 -0.032

RMSE 0.445 0.223 0.255 0.332 0.022 0.033 0.020 0.041

p=100%, γ0 = 0, ρ = 0.5 MB -0.431 -0.140 -0.205 -0.291 -0.008 -0.074 -0.045 -0.016

RMSE 0.446 0.219 0.256 0.338 0.021 0.035 0.022 0.030

p=100%, γ1 = 0.8, ρ = 0 MB -0.439 0.267 -0.293 -0.854 -0.053 0.315 -0.037 -0.568

RMSE 0.465 0.743 0.349 0.570 0.217 1.149 0.093 0.210

p=100%, γ1 = 0.8, ρ = 0.5 MB -0.441 0.265 -0.296 -0.857 -0.035 0.330 -0.060 -0.552

RMSE 0.469 0.741 0.353 0.573 0.205 1.117 0.112 0.197

p=80%, γ0 = 0, ρ = 0 MB -0.377 -0.098 -0.149 -0.230 -0.015 -0.061 -0.031 -0.032

RMSE 0.465 0.743 0.349 0.570 0.217 1.149 0.093 0.210

p=80%, γ0 = 0, ρ = 0.5 MB -0.370 -0.087 -0.140 -0.223 -0.028 -0.057 -0.041 -0.020

RMSE 0.393 0.207 0.221 0.292 0.304 0.030 0.025 0.035

p=80%, γ1 = 0.8, ρ = 0 MB -0.392 0.321 -0.247 -0.807 -0.057 0.340 -0.043 -0.564

RMSE 0.434 0.897 0.337 0.547 0.231 1.219 0.121 0.227

p=80%, γ1 = 0.8, ρ = 0.5 MB -0.376 0.331 -0.226 -0.791 -0.038 0.356 -0.053 -0.561

RMSE 0.418 0.913 0.320 0.537 0.214 1.181 0.130 0.203

Note: Cells highlighted in gray when Mean Bias differs by less than 10% from true parameter or RMSE<.1

Table 1: Mean Bias and RMSE for n=1000 and censoring rate=40%
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Variable Label Mean Std. Dev. Min. Max. N

Dependent

P Participation (=1) 0.550 0.496 0 1 599

WTP Willingness to pay for protective devices (in e) 93.46 145.54 0 1500 335

Sociodemographic

Gender Gender (Male=1) 0.449 0.497 0 1 599

Age Age (in years) 51.293 17.003 16 94 593

Child Has at least one child (=1) 0.362 0.481 0 1 599

Education Education (ordinal variable) 1.853 1.14 1 4 599

Owner Is the owner of the housing (=1) 0.476 0.5 0 1 599

X variables

Income Monthly income of the respondent (in e) 1423.478 904.531 0 8000 575

HousingRisk Living on the ground floor or in a house (=1) 0.605 0.489 0 1 593

PastExperience Already experienced a flood (=1) 0.521 0.5 0 1 593

ProbaFlood Perceived likelihood of being flooded in the next 10 years (in %) 9.353 14.958 0 100 593

Impatience Preference for the present score (1-7 score) 2.974 2.756 0 7 568

RiskTolerance Loss lover score (1-4 score) 1.56 0.86 1 4 593

Happy Declared subjective well-being (0-10 score) 6.772 2.043 0 10 593

PTSD Post-Traumatic Stress Disorder (=1) 0.105 0.306 0 1 593

W variables

Draguignan Living in Draguignan, flash-flooded 2 years before the survey (=1) 0.256 0.436 0 1 593

Vaison Living in Vaison-la-Romaine, flash-flooded 20 years before the survey (=1) 0.251 0.434 0 1 593

Berre Living in Berre l’Etang, at potential risk of flooding (=1) 0.238 0.426 0 1 593

Inform Looked for information about flood risk (=1) 0.14 0.347 0 1 593

NbrInfo Number of media known for information about flood risk (integer) 2.526 1.422 0 8 593

Table 2: Summary Statistics (n=599)
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Tobit CQR

0.25 0.50 0.75

Intercept -130.307*** -58.168** -70.612** -59.227*

(0.002) (0.039) (0.048) (0.088)

Income 0.030*** 0.011* 0.015 0.019***

(0.004) (0.100) (0.141) (<.001)

PastExperience -76.041*** -11.013 -28.045** -38.154***

(<.001) (0.129) (0.049) (0.003)

ProbaFlood 3.247*** 0.966** 1.521** 3.825***

(<.001) (0.014) (0.028) (<.001)

Impatience -14.214*** -5.643*** -10.259*** -17.711***

(<.001) (<.001) (<.001) (<.001)

RiskTolerance 33.433*** 5.470 23.737*** 33.767***

(<.001) (0.446) (0.002) (0.006)

Happy 15.285*** 8.943** 12.146*** 12.245***

(0.003) (0.012) (0.002) (0.002)

Wealth 0.127*** 0.019 0.098 0.208***

(0.004) (0.550) (0.118) (<.001)

PTSD 68.880** 30.030 62.205 110.732***

(0.02) (0.472) (0.149) (<.001)

Log Likelihood -1,479.044

N 310 310 310 310

P-values in brackets: ??? if p-value<.01, ?? if p-value<.05, ? if p-value<.1 .

Table 3: Standard Tobit and CQR
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Tobit with selection CQR with selection

Participation WTP Participation WTP

0.25 0.50 0.75

Intercept 0.291 -37.847 0.234 -4.710 -25.863** -34.723**

(0.301) (0.196) (0.428) (0.128) (0.040) (0.048)

Income 0.016 0.027** -0.215 0.002* 0.013* 0.012

(0.712) (0.050) (0.200) (0.090) (0.074) (0.136)

PastExperience -0.012 -5.199 -0.051 -5.755** -27.229 -41.157

(0.882) (0.521) (0.709) (0.028) (0.104) (0.218)

ProbaFlood -1.112** 2.370*** -1.545*** 0.184*** 0.921*** 2.676***

(0.020) (<.001) (0.009) (0.010) (0.008) (0.002)

Impatience -0.890** 0.194 -1.361** 0.012 0.037 -0.269

(0.045) (0.506) (0.020) (0.830) (0.584) (0.370)

RiskTolerance 0.487*** 22.862** 0.413** 0.380 7.693* 27.571**

(0.010) (0.015) (0.017) (0.234) (0.068) (0.024)

Happy 0.004 8.403** 0.004 0.450** 4.122** 5.848*

(0.847) (0.025) (0.8387) (0.038) (0.018) (0.078)

Wealth <.001 0.106*** <.001 0.007 0.012 0.061*

(0.667) (0.005) (0.711) (0.214) (0.124) (0.056)

PTSD 0.714* 67.188** 0.991* -0.099 23.932 36.834*

(0.100) (0.030) (0.087) (0.818) (0.240) (0.052)

Inform 0.01 0.006

(0.120) (0.107)

NbrInfo -0.001 -0.001

(0.566) (0.768)

NbrInfo2 -0.440** -0.398**

(0.030) (0.039)

Draguignan 0.089 0.126*

(0.125) (0.054)

Vaison -0.0261 -0.012

(0.411) (0.666)

Berre -0.001 <.001

(0.782) (0.920)

Rho -0.572*** -0.680***

(<.001) (<.001)

N 593 310 593 310 310 310

P-values in brackets: ??? if p-value<.01, ?? if p-value<.05, ? if p-value<.1.

Table 4: Tobit with selection and CQR with selection
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Figure 1: GMM objective function for two grid densities, n = 1000. Upper

panel: θ=0.01, CPU time = 9.202 s. Lower panel: θ=0.2, CPU time = 0.684

s).
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Appendix A: Details on MC experiment

Two standard criteria used in the MC and QR literature to compare performance of

different models are Mean Bias (MB) and Root-Mean-Square Error (RMSE). They both

measure the magnitude of the deviations of MC estimates from the true estimate (Paarsch,

1984; Buchinsky and Hahn, 1998; Chernozhukov et al., 2015).

For a given specification, the MB is defined as: 1
R

∑R
r=1(b̂r − b) and the RMSE is defined

as:

√
1
R

∑R
r=1

(
b̂r−b
b

)2
where b is the true value of the marginal effect of x on WTP and

b̂r the estimation of the marginal effect of xr on WTPr for the rth of the R MC replications.

Note that this marginal effect is not equal to β for CQR when the quantile is different

from 0.5. For the homoskedastic case, it is equal to β. For the heteroskedastic case, it

is equal to β + γj=1,2F
−1
u (τ), with F−1u (τ) = 0 if and only if τ = 0.5 for a symmetric,

zero-centered distribution (as the standard normal).

Moreover, for symmetric (zero-centered) distributions and for conditional mean models,

the mean is equal to the median (and equals zero for zero-centered distributions) and

b = β.
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REE VIb.pdf

b1
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB 0 0.002 0.001 -0.001 -0.0102 -0.1034 -0.0485 -0.041

RMSE 0.014 0.02 0.018 0.02 0.0005 0.0027 0.0006 0.0004
p=100%, g0=0, r = 0.5 MB 0.001 0.002 0.001 -0.001 -0.0113 -0.0845 -0.1278 -0.065

RMSE 0.014 0.02 0.018 0.02 0.0005 0.0018 0.0042 0.0011
p=100%, g1=0.8, r = 0 MB 0 0.401 0 -0.401 -0.0124 -0.0459 -0.2362 -0.1246

RMSE 0.042 0.283 0.045 0.163 0.0241 0.0018 0.0144 0.0026
p=100%, g1=0.8, r = 0.5 MB 0 0.4 0 -0.402 -0.0173 -0.1195 -0.1394 -0.2429

RMSE 0.042 0.282 0.045 0.163 0.0246 0.0079 0.0054 0.0098
p=80%, g0=0, r = 0 MB 0 0.002 0 -0.002 -0.0102 -0.1034 -0.0485 -0.041

RMSE 0.015 0.02 0.019 0.021 0.0005 0.0027 0.0006 0.0004
p=80%, g0=0, r = 0.5 MB -0.016 -0.016 -0.015 -0.016 -0.0113 -0.0845 -0.1278 -0.065

RMSE 0.017 0.023 0.021 0.022 0.0005 0.0018 0.0042 0.0011
p=80%, g1=0.8, r = 0 MB -0.001 0.407 -0.001 -0.408 -0.0123 -0.0459 -0.2362 -0.1246

RMSE 0.044 0.288 0.048 0.166 0.0241 0.0018 0.0144 0.0026
p=80%, g1=0.8, r = 0.5 MB -0.016 0.383 -0.02 -0.427 -0.0173 -0.1195 -0.1394 -0.2429

RMSE 0.045 0.272 0.049 0.173 0.0246 0.0079 0.0054 0.0098

b2
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB -0.001 -0.001 0.000 0.001 0.101 0.178 0.203 0.248

RMSE 0.029 0.043 0.040 0.044 0.004 0.008 0.010 0.016
p=100%, g0=0, r = 0.5 MB -0.001 -0.002 -0.001 0.001 0.104 0.258 0.161 0.164

RMSE 0.029 0.044 0.040 0.044 0.004 0.017 0.007 0.007
p=100%, g1=0.8, r = 0 MB 0.000 0.537 0.002 -0.534 0.130 0.866 0.333 -0.252

RMSE 0.045 0.217 0.058 0.375 0.012 0.116 0.028 0.031
p=100%, g1=0.8, r = 0.5 MB -0.001 0.536 0.001 -0.534 0.130 0.994 0.220 -0.378

RMSE 0.045 0.217 0.058 0.376 0.011 0.153 0.013 0.068
p=80%, g0=0, r = 0 MB 0.001 0.001 0.000 0.001 0.101 0.178 0.203 0.248

RMSE 0.033 0.048 0.044 0.048 0.004 0.008 0.010 0.016
p=80%, g0=0, r = 0.5 MB 0.002 -0.001 -0.001 -0.002 0.104 0.258 0.161 0.164

RMSE 0.032 0.048 0.043 0.048 0.004 0.017 0.007 0.007
p=80%, g1=0.8, r = 0 MB -0.004 0.532 -0.003 -0.539 0.130 0.866 0.333 -0.252

RMSE 0.052 0.217 0.066 0.382 0.012 0.116 0.028 0.031
p=80%, g1=0.8, r = 0.5 MB -0.002 0.535 -0.002 -0.540 0.130 0.994 0.220 -0.378

RMSE 0.051 0.218 0.066 0.382 0.011 0.153 0.013 0.068

b3
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB 0.004 0.008 0.002 -0.002 -0.018 -0.060 -0.050 -0.106

RMSE 0.190 0.268 0.244 0.267 0.042 0.043 0.043 0.098
p=100%, g0=0, r = 0.5 MB 0.000 -0.001 0.001 -0.004 -0.025 -0.067 -0.084 -0.091

RMSE 0.193 0.273 0.249 0.278 0.046 0.054 0.089 0.069
p=100%, g1=0.8, r = 0 MB 0.003 0.548 -0.001 -0.547 -0.015 0.394 -0.104 -0.670

RMSE 0.292 1.450 0.347 0.431 0.267 1.321 0.141 0.299
p=100%, g1=0.8, r = 0.5 MB 0.006 0.558 0.006 -0.539 -0.033 0.425 -0.164 -0.655

RMSE 0.301 1.475 0.357 0.430 0.260 1.675 0.276 0.319
p=80%, g0=0, r = 0 MB 0.001 0.003 -0.001 -0.001 -0.018 -0.060 -0.050 -0.106

RMSE 0.217 0.305 0.278 0.298 0.042 0.043 0.043 0.098
p=80%, g0=0, r = 0.5 MB 0.001 0.002 0.001 -0.006 -0.025 -0.067 -0.084 -0.091

RMSE 0.215 0.301 0.275 0.298 0.046 0.054 0.089 0.069
p=80%, g1=0.8, r = 0 MB 0.002 0.545 0.005 -0.538 -0.015 0.394 -0.104 -0.670

RMSE 0.342 1.518 0.403 0.452 0.267 1.321 0.141 0.299
p=80%, g1=0.8, r = 0.5 MB 0.000 0.549 0.001 -0.544 -0.032 0.425 -0.164 -0.655

RMSE 0.343 1.519 0.402 0.456 0.259 1.675 0.276 0.319

Note: Cells are highlighted in gray when the Mean Bias differs by less than 10% from the true parameter.
For the RMSE, cells are highlighted in gray when the RMSE is less than .1.

Table B-1: Mean Bias and Root-Mean-Square Error for n=300 and censoring rate=0%

Appendix B: Additional Monte Carlo results
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REE VIIb.pdf

b1
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB -0.228 -0.120 -0.131 -0.125 0.000 -0.071 -0.055 -0.080

RMSE 0.120 0.070 0.072 0.069 0.001 0.001 0.001 0.002
p=100%, g0=0, r = 0.5 MB -0.228 -0.120 -0.132 -0.125 -0.001 -0.073 -0.090 -0.088

RMSE 0.120 0.070 0.073 0.069 0.001 0.001 0.002 0.002
p=100%, g1=0.8, r = 0 MB -0.232 0.163 -0.202 -0.580 -0.080 -0.019 -0.339 -0.157

RMSE 0.127 0.149 0.114 0.232 0.040 0.002 0.029 0.004
p=100%, g1=0.8, r = 0.5 MB -0.229 0.166 -0.199 -0.579 0.009 -0.213 -0.065 -0.350

RMSE 0.126 0.152 0.113 0.231 0.042 0.022 0.002 0.019
p=80%, g0=0, r = 0 MB -0.202 -0.085 -0.099 -0.107 0.000 -0.072 -0.062 -0.079

RMSE 0.107 0.054 0.058 0.061 0.001 0.001 0.001 0.002
p=80%, g0=0, r = 0.5 MB -0.206 -0.093 -0.107 -0.112 -0.001 -0.078 -0.121 -0.087

RMSE 0.109 0.057 0.061 0.063 0.001 0.002 0.004 0.002
p=80%, g1=0.8, r = 0 MB -0.203 0.228 -0.163 -0.561 -0.081 -0.046 -0.345 -0.162

RMSE 0.114 0.184 0.098 0.225 0.045 0.003 0.030 0.004
p=80%, g1=0.8, r = 0.5 MB -0.210 0.214 -0.171 -0.567 0.014 -0.270 -0.087 -0.363

RMSE 0.118 0.176 0.102 0.227 0.044 0.035 0.003 0.021

b2
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB 0.889 0.292 0.427 0.607 0.040 0.118 0.115 0.042

RMSE 0.447 0.160 0.222 0.310 0.002 0.004 0.004 0.001
p=100%, g0=0, r = 0.5 MB 0.887 0.291 0.424 0.606 0.030 0.073 0.019 0.034

RMSE 0.445 0.159 0.221 0.310 0.002 0.002 0.000 0.001
p=100%, g1=0.8, r = 0 MB 0.900 1.110 0.608 0.109 0.101 0.801 0.162 -0.547

RMSE 0.453 0.443 0.313 0.123 0.019 0.100 0.007 0.141
p=100%, g1=0.8, r = 0.5 MB 0.905 1.111 0.610 0.118 0.066 0.703 -0.016 -0.608

RMSE 0.455 0.444 0.314 0.125 0.019 0.077 0.001 0.175
p=80%, g0=0, r = 0 MB 0.788 0.213 0.323 0.498 0.038 0.079 0.099 0.038

RMSE 0.397 0.126 0.174 0.258 0.002 0.002 0.003 0.001
p=80%, g0=0, r = 0.5 MB 0.767 0.195 0.302 0.470 0.029 0.055 -0.011 0.031

RMSE 0.387 0.118 0.163 0.244 0.002 0.001 0.000 0.001
p=80%, g1=0.8, r = 0 MB 0.805 0.993 0.499 0.020 0.092 0.726 0.124 -0.548

RMSE 0.406 0.399 0.263 0.110 0.021 0.083 0.005 0.142
p=80%, g1=0.8, r = 0.5 MB 0.789 0.974 0.476 -0.005 0.065 0.618 -0.040 -0.638

RMSE 0.399 0.392 0.252 0.108 0.021 0.060 0.001 0.194

b3
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB -0.429 -0.136 -0.202 -0.286 0.004 -0.043 -0.054 -0.073

RMSE 0.479 0.344 0.352 0.426 0.074 0.070 0.113 0.099
p=100%, g0=0, r = 0.5 MB -0.427 -0.136 -0.199 -0.284 0.012 -0.011 -0.067 -0.072

RMSE 0.478 0.339 0.348 0.418 0.069 0.074 0.132 0.144
p=100%, g1=0.8, r = 0 MB -0.447 0.250 -0.304 -0.862 0.008 0.414 -0.107 -0.613

RMSE 0.530 1.016 0.463 0.611 0.594 2.200 0.469 0.322
p=100%, g1=0.8, r = 0.5 MB -0.437 0.267 -0.294 -0.859 0.011 0.500 -0.104 -0.639

RMSE 0.520 1.034 0.453 0.610 0.593 3.239 0.491 0.413
p=80%, g0=0, r = 0 MB -0.379 -0.094 -0.156 -0.239 -0.001 -0.050 -0.057 -0.074

RMSE 0.451 0.362 0.352 0.418 0.078 0.092 0.117 0.106
p=80%, g0=0, r = 0.5 MB -0.372 -0.089 -0.143 -0.223 0.003 -0.010 -0.066 -0.078

RMSE 0.446 0.357 0.342 0.412 0.073 0.081 0.130 0.141
p=80%, g1=0.8, r = 0 MB -0.393 0.321 -0.249 -0.820 -0.004 0.388 -0.115 -0.621

RMSE 0.515 1.248 0.479 0.606 0.668 2.476 0.473 0.321
p=80%, g1=0.8, r = 0.5 MB -0.382 0.326 -0.227 -0.801 -0.034 0.494 -0.107 -0.639

RMSE 0.509 1.245 0.471 0.595 0.631 3.372 0.487 0.415
Note: Cells are highlighted in gray when the Mean Bias differs by less than 10% from the true parameter.

For the RMSE, cells are highlighted in gray when the RMSE is less than .1.

Table B-2: Mean Bias and Root-Mean-Square Error for n=300 and censoring rate=40%
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REE VIIIb.pdf

b1
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB 0.000 0.000 0.000 0.000 -0.011 -0.051 -0.071 -0.051

RMSE 0.008 0.010 0.010 0.011 0.000 0.001 0.001 0.001
p=100%, g0=0, r = 0.5 MB 0.000 0.000 0.000 -0.001 -0.012 -0.054 -0.056 -0.073

RMSE 0.007 0.010 0.009 0.010 0.000 0.001 0.001 0.001
p=100%, g1=0.8, r = 0 MB 0.000 0.401 -0.001 -0.400 -0.029 -0.200 -0.178 -0.065

RMSE 0.024 0.277 0.025 0.159 0.011 0.019 0.008 0.001
p=100%, g1=0.8, r = 0.5 MB 0.000 0.400 0.001 -0.399 -0.026 -0.110 -0.235 -0.263

RMSE 0.024 0.277 0.025 0.159 0.012 0.006 0.014 0.011
p=80%, g0=0, r = 0 MB 0.000 0.000 0.000 -0.001 -0.011 -0.051 -0.071 -0.051

RMSE 0.008 0.011 0.010 0.011 0.000 0.001 0.001 0.001
p=80%, g0=0, r = 0.5 MB -0.015 -0.016 -0.015 -0.014 -0.009 -0.054 -0.056 -0.073

RMSE 0.011 0.014 0.013 0.013 0.000 0.001 0.001 0.001
p=80%, g1=0.8, r = 0 MB 0.000 0.403 0.000 -0.403 -0.029 -0.200 -0.178 -0.065

RMSE 0.025 0.279 0.026 0.160 0.011 0.019 0.008 0.001
p=80%, g1=0.8, r = 0.5 MB -0.014 0.382 -0.019 -0.422 -0.028 -0.110 -0.235 -0.263

RMSE 0.027 0.265 0.029 0.168 0.011 0.006 0.014 0.011

b2
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB 0.000 0.000 0.000 0.000 0.103 0.158 0.172 0.179

RMSE 0.016 0.024 0.022 0.024 0.003 0.006 0.007 0.008
p=100%, g0=0, r = 0.5 MB -0.001 0.000 -0.001 -0.001 0.103 0.227 0.110 0.164

RMSE 0.016 0.024 0.022 0.025 0.003 0.013 0.003 0.007
p=100%, g1=0.8, r = 0 MB -0.001 0.535 0.000 -0.535 0.132 0.869 0.281 -0.323

RMSE 0.024 0.212 0.032 0.370 0.008 0.117 0.020 0.049
p=100%, g1=0.8, r = 0.5 MB 0.000 0.536 0.002 -0.534 0.128 0.956 0.180 -0.320

RMSE 0.025 0.213 0.032 0.369 0.011 0.142 0.008 0.048
p=80%, g0=0, r = 0 MB 0.000 0.000 0.000 0.000 0.103 0.158 0.172 0.179

RMSE 0.018 0.026 0.024 0.026 0.003 0.006 0.007 0.008
p=80%, g0=0, r = 0.5 MB 0.000 -0.004 -0.002 -0.003 0.079 0.227 0.110 0.164

RMSE 0.018 0.026 0.025 0.026 0.002 0.013 0.003 0.007
p=80%, g1=0.8, r = 0 MB 0.000 0.537 0.000 -0.535 0.132 0.869 0.281 -0.323

RMSE 0.028 0.214 0.036 0.370 0.008 0.117 0.020 0.049
p=80%, g1=0.8, r = 0.5 MB -0.002 0.533 -0.004 -0.540 0.130 0.956 0.180 -0.320

RMSE 0.028 0.212 0.036 0.374 0.011 0.142 0.008 0.048

b3
DGP Statistics Tobit CQR 25% CQR 50% CQR 75% Tobit-S CQR-S 25% CQR-S 50% CQR-S 75%
p=100%, g0=0, r = 0 MB 0.001 0.005 0.001 -0.001 -0.040 -0.065 -0.059 -0.085

RMSE 0.106 0.148 0.136 0.149 0.015 0.023 0.016 0.031
p=100%, g0=0, r = 0.5 MB -0.002 -0.003 -0.002 -0.005 -0.040 -0.064 -0.069 -0.084

RMSE 0.106 0.148 0.135 0.149 0.015 0.020 0.019 0.031
p=100%, g1=0.8, r = 0 MB 0.001 0.543 0.001 -0.542 -0.059 0.344 -0.087 -0.654

RMSE 0.161 1.262 0.192 0.376 0.102 0.876 0.048 0.211
p=100%, g1=0.8, r = 0.5 MB -0.002 0.537 -0.002 -0.545 -0.056 0.375 -0.107 -0.639

RMSE 0.163 1.249 0.193 0.379 0.117 0.910 0.082 0.197
p=80%, g0=0, r = 0 MB 0.001 0.000 0.001 0.002 -0.040 -0.065 -0.059 -0.085

RMSE 0.118 0.163 0.152 0.165 0.015 0.023 0.016 0.031
p=80%, g0=0, r = 0.5 MB -0.002 0.002 0.000 -0.002 -0.037 -0.064 -0.069 -0.084

RMSE 0.119 0.163 0.150 0.165 0.013 0.020 0.019 0.031
p=80%, g1=0.8, r = 0 MB 0.000 0.546 0.000 -0.546 -0.059 0.344 -0.087 -0.654

RMSE 0.187 1.295 0.221 0.387 0.102 0.876 0.048 0.211
p=80%, g1=0.8, r = 0.5 MB 0.000 0.545 0.000 -0.544 -0.064 0.375 -0.107 -0.639

RMSE 0.185 1.293 0.216 0.386 0.105 0.910 0.082 0.197
Note: Cells are highlighted in gray when the Mean Bias differs by less than 10% from the true parameter.

For the RMSE, cells are highlighted in gray when the RMSE is less than .1.

Table B-3: Mean Bias and Root-Mean-Square Error for n=1000 and censoring rate=0%
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Appendix C: Hypothetical scenario

A translation of the questions and the scenario presented to respondents and relevant

to this study is reproduced below. Sentences in italics are for the reader and were not read

to respondents.

Introduction by Interviewer

“You are going to be the main actor in our fictitious scenario. You will have to take

the best decision regarding your housing. Only your opinion matters, there is no wrong

or right answer. Not everyone is fully aware of the way the flood insurance system works,

so we present it briefly. In France, every third-party liability insurance policy regarding

fire or damage includes a mandatory contribution known as CatNat. To benefit from this

type of compensation in the event of flood, the flood event must have been declared a

’natural catastrophe’ by joint ministerial decree and the goods (property and belongings)

must be insured. Compensation will be subject to a e380 deductible. Personal injuries

are not covered by the CatNat system. They are covered either by a personal insurance

policy, or by the national government if a civil servant (administrative or elected) can be

held responsible for the occurrence of the flood event.”

Protective devices scenario

“Let us imagine that the CatNat insurance still covers the flood-related events. Your

current insurance contract still covers all other types of events, and your premium remains

unchanged. Imagine that the national government creates a Flood Management Fund

to finance protective devices against flood. Building dikes, water retention ponds or

improving rain water evacuation networks would reduce the height and speed of water

and would completely eliminate the risk of flood in your commune. This work will only

be realized if the population involved contributes to the Flood Management Fund. We

would like to know how much maximum you would be willing to pay per year to this Fund.”

Note to the interviewer: If the respondent asks for details on the level of protection,

the cost of the protective devices or the way they would be funded, please give the following

answer:

“This survey is part of a research project that involves several communes. What we are

considering here is a fictitious situation, so that the exact way the protective devices would

be implemented is not yet decided. When answering, however, imagine that everybody

covered by this protective devices pays, like the household waste removal tax, for instance.”
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“We remind you that you have previously declared that the probability of being flooded

during the coming year is ....” (remind the respondent of his/her previous answer to

question L16-1).

WTP Question 1. “Would you be willing to contribute to the Flood Management Fund

to finance protective devices against flood?”.

Note to the interviewer:

If the answer to question WTP Question 1 is “No”, then ask for the reasons.

If the answer to WTP Question 1 is “Yes”, then ask the following:

WTP Question 2. “How much maximum would you be willing to pay per year? To help

you, here is a card with several amounts.”

Note to the interviewer: [Present the circular payment card].

“Do not forget that this money will be drawn from your household’s budget! You will

therefore have less money at the end of the month for consumption or savings.”
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