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Abstract

Several representativeness issues affect the available data sources in studying popu-
lations’ income distributions. High-income under-reporting and non-response issues
have been evidenced to be particularly significant in the literature, due to their
consequence in under-estimating income growth and inequality. This paper bridges
several past parametric modelling attempts to account for high-income data issues
in making parametric inference on income distributions at the population level.
A unified parametric framework integrating parametric income distribution models
and popular data replacing and reweighting corrections is developed. To exploit this
framework for empirical analysis, an Approximate Bayesian Computation approach
is developed. This approach updates prior beliefs on the population income distri-
bution and the high-income data issues presumably affecting the available data by
attempting to reproduce the observed income distribution under simulations from
the parametric model. Applications on simulated and EU-SILC data illustrate the
performance of the approach in studying population-level mean incomes and in-
equality from data potentially affected by these high-income issues.
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1 Introduction

The recent literature on income inequality has paid increasing attention to the dynamics
and the measurement of top incomes (e.g., Atkinson and Piketty 2007, Leigh 2009, Atkin-
son et al. 2011, Burkhauser et al. 2017). The slowly-rising availability of tax data for
research purposes along with findings concerning the recent rises in the share of incomes
accumulated at the very top quantiles of the distribution (e.g., Lakner and Milanovic
2016, Alvaredo et al. 2018) have jointly brought forward the multiple deficiencies affect-
ing the typical methods and data sources used to study income distributions.

A robustly evidenced shortcoming of these conventional approaches involves the lim-
ited quality of publicly-available household survey data, the most commonly used data
source on the subject, in capturing the magnitude and trends of the income shares of the
highest incomes in their population (e.g., Deaton 2005, Burd́ın et al. 2014, Jenkins 2017,
Lustig 2019, Flachaire et al. 2022).

Typically these measurement and coverage issues around the upper tail of a popula-
tion’s income distribution imply non-random missing information in the data (i.e., the
errors are more likely or larger in magnitude for higher incomes) and can therefore induce
bias into any resulting distributional estimate. When ignored, this can have many clear
policy implications when it leads to underestimation of income growth and inequality at
the population level, along with a biased reading of their relationship and dynamics. This
has motivated a vast literature on correction and estimation methods to overcome this
data issue for the study of income distributions.

An important implication of the almost universal problem of missing or misreported
high incomes is that any empirical strategy seeking to overcome it requires a decision
on the magnitude and distribution of such errors affecting the data. As put forward by
Bourguignon (2018), adjusting for measurement errors on high incomes requires a value
for some or all of three key parameters: the income level beyond which measurement
errors are to be corrected, the true population share of incomes above this level, and the
share of under-covered population incomes.

Although external data sources can be instrumentally used to formulate informative
choices for these parameters (e.g., Atkinson and Piketty 2007, Chapter 2, Bustos 2015,
Blanchet et al. 2022, Jorda and Niño-Zarazúa 2019, Flachaire et al. 2022), correcting for
measurement or coverage errors on high incomes is conditioned by the uncertainty around
them. Broadly speaking, the precision with which inference can be made on a popula-
tion’s income distribution depends on the uncertainty around the form and magnitude of
measurement or coverage errors affecting the available data.

This paper proposes a new empirical strategy bridging several previous results in the
income inequality literature. Firstly, a parametric modeling approach is developed in
the interest of integrating within a single framework all assumptions about the form of
the population’s income distribution and the form of the measurement or coverage issues
affecting the available data. This parametric framework allows for exploiting several pre-
viously explored parametric corrections for high-incomes data issues in making inference
at the population level.
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Secondly, a Bayesian estimation strategy allows for inference on the population’s in-
come distribution through data presumably affected by representativeness issues on the
upper tail. This strategy extends the Approximate Bayesian Computation approach re-
cently explored in Kobayashi and Kakamu (2019) and Silva (2023) in the context of
income distributions. In exploiting this approach to estimate income distributions under
the proposed parametric framework, the magnitudes and forms of the representativeness
issues may be uncertain. Past knowledge on the possible nature of these under similar
settings poses information that may be used in dealing with this uncertainty through the
use of informative prior beliefs.

Finally, several applications over simulated and household survey data from the Eu-
ropean Union’s Statistics on Income and Living Conditions (EU-SILC) illustrate the
performance of the proposed approach in controlled and observational settings. These
applications evidence the several biases that can hinder making inference on a popula-
tion’s income distribution if high-income representativeness issues affecting the available
data are ignored. Additionally, the presented estimates suggest the presence of both
high-income under-reporting and high-income non-response issues in selected EU-SILC
samples. This results in population-level estimates of average incomes and inequality
that are at higher levels and with higher uncertainty than their sample counterparts.

The following section presents an overview on the common causes and corrections for
data errors on high incomes explored in the previous literature. Section 3 develops a
parametric framework integrating popular forms of such data errors to parametric income
distributions. The fourth section introduces an Approximate Bayesian Computation rou-
tine for inference on a population’s income distribution through the proposed parametric
framework and under magnitudes and forms for high-income data issues that might be
uncertain. Section 5 presents simulated and EU-SILC data applications of the method
under typical parametric forms. The sixth and final section of the paper presents conclud-
ing remarks with proposals for future work in studying high-income data issues through
the proposed approach.

2 Dealing with ‘missing rich’ issues

2.1 The ’missing rich’ phenomenon and its sources

In describing the nature of the ’missing rich’ (MR) problem, Lustig (2020) points at the
many different issues affecting the upper tail of the observed income distribution in usual
data sources. In the context of survey data, the main focus of this paper, one first source
of MR may arise from non-coverage errors in the sampling design itself as a consequence
of the sparseness and irreplaceability of high income households. High-income households
are generally very few and very dissimilar between themselves such that households on
any part of the upper tail of the distribution may have a zero probability of inclusion in
the achieved survey sample.

A second possible source for MR in survey data involves reporting issues either in the
form of unit or item non-response (i.e., high-income households refusing to respond to
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the survey or particularly to the items concerning their income level, respectively) or in
the form of under-reporting of income levels when responding to the survey. Even if the
sampling scheme is designed to be representative of the income distribution of the entire
population of interest, unit or item non-response may yield an achieved sample which is
not and particularly so when this non-response occurs more significantly for households on
the upper tail of the income distribution. In a similar way, with income under-reporting
the achieved survey sample may yield an income distribution which is not representative
of the population’s true income distribution if under-reporting is particularly present for
high-income households.

Finally, a third possible source can be found within the data provision procedures
commonly used by the institutions in charge of distributing publicly-available household
survey datasets. In the interest of statistical disclosure control, it is common for such
publicly-available datasets to contain a measure of household incomes which is top-coded
(i.e., right-censored) meaning that reported incomes above a certain threshold cannot be
observed as measured and only an indicator of being above this income threshold is pre-
sented.

An additional consideration on the nature of the MR problem concerns the analysis
of income concepts which are an aggregate of different income sources. Notably, when
working with household survey data it is common to focus the analysis on the distribu-
tion of a key income variable which aggregates all income sources surveyed (i.e., labor
incomes, capital incomes, social security benefits, etc.). There is, however, vast empirical
evidence of differential trends in MR issues across the distributions of each income source
separately (e.g., see Moore et al. 2000, Angel et al. 2019). Ultimately, the patterns of
MR issues that might affect a measure of incomes which aggregates all sources will be
the output of the interaction of the different MR patterns affecting each income source
and the trends in the composition of these aggregated incomes along the distribution.

2.2 Income distribution models and treatment of ’missing rich’
issues

In modeling income distributions, the use of parametric models is a standard. Some work
has fruitfully explored the use of non- or semi-parametric methods for income distribution
analysis (e.g., Jenkins 1995), yet there is vast evidence of parametric models fitting real
data on incomes better than these alternatives in many different settings (e.g., Darvas
2019, Jorda et al. 2021).

The usual modeling step involves assuming that individuals’ incomes yi are distributed
across its population following some three- (i.e., Θ ⊆ R3) or four-parameter (i.e., Θ ⊆ R4)
distribution yi ∼ fy(.;θ) , θ ∈ Θ. Popular choices for fy(.;θ) include the Generalized Beta
family of distributions (e.g., see McDonald 1984, Jenkins 2009, citealtgrafnedyalkova2014,
Chotikapanich et al. 2018, Jorda and Niño-Zarazúa 2019), in particular the four-parameter
Generalized Beta distribution of the second kind (GB2, which is taken as illustratory ref-
erence in what follows) and the three-parameter Singh-Maddala (Burr XII) distribution,
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and the Double Pareto Log-Normal distribution1.

There are several virtues to the parametric approach aside from its generally good fit
to real data on incomes. Of particular relevance is its flexibility with respect to the for-
mat of data available. Several estimators following parametric expressions for microdata
or bracketed/grouped data from incomes following yi ∼ fy(.;θ) are available for most
distributions such as Generalized Method-of-Moments (GMM), Maximum Likelihood Es-
timation (MLE), or Bayesian inference methods.

A central consideration required in analysing data prone to high-income representa-
tiveness issues is that the distribution of observed incomes yObsi will very unlikely follow the
form of the population’s income distribution yi ∼ fy(.;θ). Within a parametric approach,
however, the observed distribution can be derived under assumed parametric forms for the
errors affecting the data (e.g., see Deaton 2005). Jointly modeling the population income
distribution component fy(.;θ) and the high-income issues is an attempt at separating
which aspects of the data reflect those of the population income distribution and which
aspects are due to the high-income problems considered.

Deriving parametric distributions for the sample distribution of incomes yObsi observed
under simple forms of measurement errors is the focus of early literature in the field. Mod-
els obtained from simple two-parameter distributions ’distorted’ through classical mea-
surement errors (i.e., independent of incomes) brought forward implications that would
be in strong contrast with recent empirical observations: classical measurement errors
can yield sample inequality estimates that overestimate inequality at the population level
(e.g., see Krishnaji 1970, Hartley and Revankar 1974, Hinkley and Revankar 1977, Van
Praag et al. 1983, Ransom and Cramer 1983, Chesher and Schluter 2002).

More recent literature, in change, has focused in characterizing under-reporting phe-
nomena affecting income data. The robustly evidenced progressiveness of under-reporting
with respect to income levels has resulted in more appropriate non-classical parametric
expressions for these measurement errors (e.g., see Gottschalk and Huynh 2010, Bour-
guignon 2018, Blanchet et al. 2022, and Flachaire et al. 2022) and has consistently found
that high-income under-reporting yields sample inequality measures that underestimate
inequality at the population level. This recent exploration of high-income under-reporting
has given way to what are known as replacing corrections: incomes presumed to be
under-reported in the data are replaced by imputations from external data sources such
as administrative tax data or by imputations from a model for the under-reporting mecha-
nism. The ’corrected’ data are then treated as a representative sample of the population’s
incomes following fy(.;θ).

1The GB2 distribution GB2(α, β, p, q) has pdf:

yi ∼ fGB2
y (yi|α, β, p, q) =

αyαp−1
i

βαpB(p, q)
(

1 +
(
yi
β

)α)p+q , (yi, β, α, p, q) ∈ R5
+

with parameters α, p, and q ruling the shape of the distribution and β ruling the scale and where B(p, q)

denotes the Beta function, defined as B(p, q) =
∫ 1

0
tp−1(1− t)q−1dt. See Chotikapanich et al. (2018) for

detailed coverage on the use of this model for income distributions.
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Another source of MR issues, that of missing observations, has also been treated un-
der parametric approaches. The case of item non-response has received significantly more
treatment than the more complex case of unit non-response (e.g., see Brunori et al. (2022)
for a recent survey). The main aspect determining how to proceed in practice concerns
the distinction between observations Missing Completely at Random (MCAR), Missing
at Random (MAR), or Missing Not at Random (MNAR), following the works of Rubin
(1976), Rubin (1977), and Greenlees et al. (1982). In the MCAR case the probability of a
unit/item being missing in the data is independent of any characteristics of the unit and
is constant across all units, inducing no particular biases to any distributional estimates
from samples affected by this form of missing data. The MAR case allows this probability
to change with the characteristics of the unit but requires it to be independent of the
unit’s income level. Finally, the more complex MNAR case allows this probability to also
change with the unit’s income level and is therefore the only mechanism capable of rep-
resenting the empirically evidenced negative relationship between response probabilities
and income levels in survey data (e.g., Bollinger et al. 2019, Hlasny 2020).

The biases introduced by MAR or MNAR missing data mechanisms in distributional
analysis have mostly been treated under the assumption that unit/item missingness is due
to non-response. This is, the assumption that conditional on being sampled high-income
units are less likely to report their incomes (in the case of item non-response) or any
information at all (in the case of unit non-response) than other units. This approach has
motivated the use of reweighting corrections: the empirical distribution of incomes in
the sample is reweighted by the related distribution of (imputed) response probabilities.
Like with replacing, the reweighted data is then treated as a representative sample of the
population’s incomes following fy(.;θ).

A particularly lacking aspect of the recent replacing/reweighting approaches in deal-
ing with MR is the lack of unified parametric frameworks integrating the modelling as-
sumptions on the income distribution fy(.;θ) and those on the under-reporting and/or
non-response mechanisms. This has several consequences on the applicability and gener-
alizability of these methods. As a model for the data directly as it is observed, a unified
parametric approach can allow for deriving expressions and estimation strategies suitable
for microdata but also for other formats such as bracketed or grouped data. Additionally,
this may prove useful in dealing with the challenge that recent approaches in the litera-
ture face concerning the choice of correction quantities (i.e., the share of missing and/or
under-reported incomes and their distribution). In general these quantities are hand-set
by the analyst or are set to match quantities given from more reliable external data.

While setting correction quantities ad hoc relies entirely on the analyst’s knowledge
about the population’s true income distribution, setting these quantities taking external
data as reference poses several issues of its own. Firstly, it is not always the case that
more reliable external data sources on incomes are available for research purposes as there
may be access restrictions to such data or the data may suffer from MR issues of their
own such as those induced by tax evasion and tax avoidance on administrative tax data.
Secondly, even when external data is available it is generally the case that the population
coverage and income components covered differ from those in the primary data available
for the analysis and this implies that several harmonizations must be made in transferring
quantities from the former to complement the latter. This harmonizations often come at
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the cost of forcing different income concepts to represent the same and of a loss in being
able to quantify the statistical uncertainty around the resulting distributional estimates
and in particular how these are affected by the inherent uncertainty concerning the cor-
rection quantities.

The parametric framework proposed in what follows builds on the recent literature ex-
ploring replacing and reweighting corrections for MR by integrating in a single distribution
function both the population income distribution model fy(.;θ) and any assumed form
for measurement or missing data issues affecting incomes. Several formats of data and
inference may be analyzed through the scope of this framework including that of learning
about plausible values for the different MR correction quantities from the data itself and
of integrating the uncertainty around these quantities into distributional estimates such
as the Gini coefficient.

3 A parametric replacing and reweighting framework

Let individual i’s true income be denoted by yi ∼ fy(.;θ), with probability density func-
tion (pdf) fy(.;θ) and cumulative distribution function (CDF) Fy(.;θ) parameterized by
the parameter vector θ, and consider a sample of observed individual incomes from this
population yObs = {yObsi }Ni=1. This sample may be affected by two types of MR issues:
high-income under-reporting, in which case income yObsi is observed but differs from yi
following under-reporting of high incomes, and non-response, in which case no income is
observed for the individual i.

To introduce a parametric model for data under both of these possible issues, let
ϕ(y,X;ν) a response probability function defining the probability for an individual
to report her income after being sampled from the population. In its most general for-
mulation this probability, parameterized by the vector ν, may depend on the individual’s
income yi and/or other characteristics X i,. but also on others’ incomes y and/or char-
acteristics X more generally. This function should allow a representation presenting all
typical properties of a univariate probability density function.

Additionally, denote by m(y,X;η) an income reporting function, defining the link
between i’s income yi, her characteristics in X, and her income reported in the data, if
any, yObsi ≡ m(y,X;η) parameterized by the vector η. For any application of empirical
relevance defining such a reporting function is only of interest in as much as it allows for
an inverse representation taking as input an observed income yObsi from the available data
and yielding as output a corresponding income level yi or an estimate of this if m(y,X;η)
is non-deterministic. A simple case presenting this property is when the reporting func-
tion is deterministic and invertible such that yi ≡ m−1(yObs,X;η) defines a replacing
function2.

2Formally, this invertibility assumption amounts to assuming the reporting function m(yi,X;η) to be
continuously differentiable with non-zero derivative at all income levels in the population as a sufficient
condition of invertibility. Moreover, this assumption also implies:

∂m−1(yObsi ,X;η)

∂yObsi

=

(
∂m(yi,X;η)

∂yi

)−1

for all income levels.
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In practice, this simplifying assumption may be invalid whenever the income reporting
function is non-deterministic such that individuals with equal characteristics and income
may randomly report different observed incomes. This assumption may also be invalid
whenever individuals with same characteristics but different income levels report a same
observed income in a deterministic manner, defining a flat region of incomes where the
reporting function is not invertible. These situations could be addressed by devising a
vector-output replacing function, yielding several possible income levels as output, in the
spirit of Multiple Imputations (e.g., see Brownstone and Valletta 1996). For simplicity
of presentations and derivations, however, the income reporting function m(y,X;η) is
assumed to be a real-output, deterministic, and invertible function in what follows.

Within this framework, we can relate i’s income to her observed income yObsi , if re-
ported, and to some unobservable income yNObsi , in case of non-response, following3:

yi =

{
m−1(yObsi ,X i;η) , with probability ϕ(yi,X i;ν)

yNObsi , with probability 1− ϕ(yi,X i;ν)
.

If no measurement or non-response issues are believed to affect the data, then this amounts
to setting (m−1(yObsi ,X i;η), ϕ(yi,X i;ν)) ≡ (yObsi , 1) and therefore yObsi ∼ fy(.;θ).

3.1 High-income under-reporting forms.

Whenever some form of measurement error is assumed to affect incomes in the data, then
this may be introduced through a specific choice for the replacing functionm−1(yObsi ,X i;η).
This function serves the purpose of introducing any replacing or imputation step where
i’s income is set as a function of her observed income and characteristics. For simplicity,
only forms m−1(yObsi ;η) where measurement errors are exclusively determined by units’
income levels are considered in what follows.

Any m−1(yObsi ;η) representing progressive under-reporting of high incomes should
imply an increasing and convex quantile ratio r(i;η) defined as:

r(i;η) =
m−1(yObs(i) ;η)

yObs(i)

,
∂r(i;η)

∂yObs(i)

≥ 0 ,
∂2r(i;η)

∂2yObs(i)

≥ 0,

with yObs(i) denoting the i-th quantile of yObs. This restricts relative discrepancies between

observed yObsi and replaced m−1(yObsi ;η) incomes to be non-decreasing with incomes.

Recently popular replacing approaches can easily be expressed as deterministic forms
for m−1(yObsi ;η) including:

3For simplification reasons, all derivations in what follows are under the assumption that i’s
both response probabilities and reported income depend only on i’s income and characteristics:
m−1(yObs,X;ν) ≡ m−1(yObsi ,Xi;ν), ϕ(y,X;ν) ≡ ϕ(yi,Xi;ν)
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� Piecewise linear quantile-ratio replacing (e.g., Flachaire et al. 2022):

m−1(yObs(i) ; {p̄k}K−1
k=1 , {βk}

K−1
k=1 , {δk}

K−1
k=1 ) ≡


yObs(i) , if p(i) ≤ p̄1

yObs(i) ×
∑K−1

k=1 1(p̄k < p(i) ≤ p̄k+1)× (βk + δkp(i))︸ ︷︷ ︸
Linear replacing weights

for incomes in
the k-th segment.

,

with δj ≤ δj+1 <∞ , j = 1, ..., K − 2, p̄K = 1, and with p(i) = Fy(y(i);θ) denoting
ordered-incomes individual yObs(i) ’s percentile in the population’s income distribu-

tion4. In absence of missing data, the sample percentile pObs(i) ≡
(i)
N
, (i) = 1, ..., N is

also a valid estimate of Fy(y(i);θ). The central assumption under this approach is

that the quantile ratio r(i;η) =
m−1(yObs

(i)
;{p̄k}K−1

k=1 ,{βk}
K−1
k=1 ,{δk}

K−1
k=1 )

yObs
(i)

can be represented

as a continuous piecewise linear function. This piecewise representation allows for
progressive under-reporting of high incomes across segments (p̄k; p̄k+1] of the in-
come distribution at the cost of introducing 3 additional parameters (p̄k; βk; δk) per
segment.

� Linear progressive under-reporting (LPU, Bourguignon 2018):

m−1(yObsi ; p̄, δ) ≡ yObsi + 1(yObsi > F−1
y (p̄;θ))︸ ︷︷ ︸

Indiv. with observed incomes
above p̄-th percentile under-report

×

(
δ(yObsi − F−1

y (p̄;θ))

1− δ

)
︸ ︷︷ ︸
Under-reported amount linearly

increases with true incomes with slope δ

,

with δ ∈ [0, 1) and with F−1
y (p̄;θ) denoting the p̄-th population income quantile.

This replacing scheme assumes that all individuals with incomes above the p̄-th
percentile under-report their incomes in the observed sample and do so in a linearly
progressive manner with under-reporting increasing by δ with every additional unit

of income. The incomes quantile ratio implied under LPU r(i;η) =
m−1(yObs

(i)
;p̄,δ)

yObs
(i)

is

strictly convex for income levels above F−1
y (p̄;θ).

� Generalized Pareto replacing: (e.g., Atkinson and Piketty 2007, Chap-
ter 2,, Jenkins 2017, Hlasny and Verme 2022, Charpentier and Flachaire
2022):

m−1(yObsi ;µ, σ, ζ) ≡ yObsi + 1(yObsi > µ)︸ ︷︷ ︸
Indiv. with observed incomes

above µ under-report

×



(

1−
(
pi−p̄
1−p̄

))−ζ
− 1

ζ

× σ − (yObsi − µ)


︸ ︷︷ ︸

Observed incomes are
replaced by corresponding percentile

under a Generalized Pareto dist.

,

where (µ, σ, ζ) are respectively the location, scale, and shape parameters of a Gen-
eralized Pareto distribution GPD(µ, σ, ζ) with CDF given by (Pickands, 1975):

Fy(yi;µ, σ, ζ) =

1−
(

1 + ζ(yi−µ)
σ

)− 1
ζ
, if ζ 6= 0

1− e−( yi−µσ ) , if ζ = 0
, yi > µ.

4In what follows 1(.) represents the indicator function, taking value 1 whenever the condition it takes
as argument holds true and 0 otherwise.
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Under this replacing scheme, any income above a level µ is assumed to be under-
reported. True incomes are assumed to follow a Generalized Pareto distribution or
some specific case such as the Pareto I, corresponding to GPD(σ

ζ
, σ, ζ) , ζ > 0,

or Pareto II, corresponding to GPD(µ, σ, ζ) , ζ > 0 above this income level. In
absence of missing data issues an individual in the pi-th sample percentile with

pi > p̄ (equivalently, yObsi > µ) has true income corresponding to the
(
pi−p̄
1−p̄

)
-th

quantile on this Pareto distribution. Similarly to LPU, the incomes quantile ratio

implied under Generalized Pareto replacing r(i;η) =
m−1(yObs

(i)
;µ,σ,ζ)

yObs
(i)

is strictly convex

for income levels above µ, representing progressiveness of the under-reporting.

These common replacing schemes all exploit the assumption that under-reporting is a de-
terministic function of individual incomes (or their sample percentile/rank equivalently),
and that individuals have the same rank in the population’s income distribution as in the
observed sample. It’s also important to note that each specific replacing scheme implies
within it specific assumptions on under-reporting behavior at the individual level.

Figure 1 below illustrates a comparative example of the quantile ratios r(i,η) under
these three common forms for m−1(.;η). The respective parameter values η are set to
represent a same progressive under-reporting pattern: LPU affecting observed incomes
from the .75-th percentile of the population income distribution upwards and with slope
of δ = .67. A first observation illustrated in this figure is that a piecewise linear approxi-
mation to the considered LPU under-reporting pattern, introducing six parameters in η in
total (i.e., a linear approximation with two segments), is not flexible enough to correctly
represent it. Secondly, replacing under a Generalized Pareto tail all incomes above the
.75-th percentile can represent the reference LPU pattern accurately except for the top
of the income distribution. For the highest incomes the differences between observed and
replaced incomes under this form can be particularly large as a consequence of the heavy
Pareto tail used for the purpose of replacing. Finally, this similarity across GPD and LPU
schemes suggests the latter as the more stable and parsimonious alternative of the two.

Further choices for m−1(yObsi ,X i;η) may exploit other individual characteristics X i

to represent larger heterogeneities in under-reporting patterns. A popular choice when
data on individual consumption is available without reporting errors of its own is to
define the income reporting function as an Engel curve (e.g., see Pissarides and Weber
1989, Lyssiotou et al. 2004, Hurst et al. 2014). Additionally, a stochastic component may
be introduced in the definition of m−1(yObsi ,X i;η) to allow for heterogeneity in under-
reporting behavior across individuals with same level of incomes (e.g., Flachaire et al.
2022).
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Figure 1: Quantile ratios under common replacing schemes
Note: Three common replacing schemes: LPU, piecewise linear quantile ratio, and General-
ized Pareto replacing (GP in legend), as applied to a same income distribution following yi ∼
GB2(2.257, 17393, 1, 1.033) and affected by LPU with p̄ = .75 (represented by the dashed vertical
line) and δ = .67. The piecewise linear approximation was calibrated to fit this LPU pattern at
the p̄1 = .75 and p̄2 = .9375 sample percentiles. The GPD coefficients ζ and σ were estimated
conditional on µ being the .995-th sample quantile as a typical empirical practice (e.g., see Jenkins
2017) and imposing finite variance (ζ < 1

2).

3.2 High-income non-response forms.

Concerning the modeling assumptions for the response probabilities ϕ(yi,X i;ν), the
several possible types of missing data mechanisms may be considered, following Rubin
(1976). If income non-response follows a random process which is unrelated to incomes
y and other characteristics X, then the mechanism corresponds to a MCAR process. In
the MCAR case, we observe incomes yObs = {yObsi }Ni=1 which are a random sample of the
population’s incomes and therefore no particular bias is induced by the missing data. A
simple MCAR mechanism is such that ϕ(yi,X i;ν) ≡ ϕ(yi,X i; p) ≡ p , p ∈ (0, 1], where
all individuals are just as likely to report incomes after they have been sampled.

A second potential mechanism concerns the case where non-response in incomes
is not completely at random but where the missingness can be fully explained by
other non-missing characteristics of the individuals and/or by the observed incomes,
i.e., ϕ(yi,X i;ν) ≡ ϕ(yObsi ,X i;ν). This mechanism represents an MAR process and
is an appropriate representation for scenarios of item non-response, where sampled
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individuals report information about their characteristics X i but not about their income,
as long as their unobserved income yNobsi is unnecessary to account for the non-random
non-response probabilities. MAR mechanisms are usually dealt with in analysis through
multiple imputations of incomes for those individuals in the data with missing incomes
but observed characteristics.

Finally, it may be the case that response probabilities may not be fully accounted
for from observed information. For instance, it may be the case that the reason why
individuals do not report their incomes in the data has everything to do with their
unobserved level of incomes yNObsi . This corresponds to the MNAR scenario and is
particularly complex to deal with, as it may include non-random unit non-response
mechanisms, where sampled individuals do not report neither incomes nor characteristics
and where their unobserved incomes yNObsi are a determinant of this.

Forms for ϕ(yi,X i;η) suitable for MAR mechanisms have been the focus of the recent
survey in Brunori et al. (2022). Recently popular reweighting approaches allowing for
dealing also with MNAR mechanisms can easily be expressed as deterministic forms for
ϕ(yi,X i;η) including:

� Right-truncation (e.g., Alvaredo 2011, Jorda and Niño-Zarazúa 2019):

ϕ(y(i); t, α) ≡

{
α , if p(i) ≤ t

0 , if p(i) > t
,

which amounts to assuming that any and all individuals above the t-th percentile
on the population income distribution will not report incomes in the data, while
anyone below this threshold will report an income with probability α. The limiting
case α → 1 corresponds to assuming that any unit with income below the t-th
percentiles will always report an income when sampled.

� Regional non-response reweighting (e.g., Korinek et al. 2007, Hlasny and
Verme 2018):

ϕ(yi,X i;β) ≡ eg(yi,Xi;β)

1 + eg(yi,Xi;β)
,

with g(yi,X i;β) being a twice continuously differentiable function of observed unit
i’s characteristics parameterized by the vector β. The comparative analysis in
Hlasny and Verme (2015) suggests a simple logarithmic form for g taking as in-
put a linear combination of income yi and region indicator variables to be equally
efficient as more complex specifications in many scenarios. This approach infers re-
sponse probabilities for units from modeling the relationship between non-response
rates and units’ characteristics at aggregate (i.e., regional) levels, when this infor-
mation is available. The key assumption is that individual characteristics relate to
individual response probabilities in the same way that they do at the aggregate level
(i.e., that ecological inference is feasible), such that individual response probabilities
ϕ(yi,X i;β) may be properly estimated and used for the purpose of reweighting the
observed data.

� Income-proportional reweighting (e.g., Blanchet et al. 2022):

ϕ(yi; γ0, γ1, t, α) =

{
eγ0(yi)

−γ1 , γ1 > 0 , if p(i) > t

α , if p(i) ≤ t
.

12



This scheme corresponds to a non-response mechanism where individuals with true
incomes above the t-th percentile have increasingly lower response probabilities,
with the parameter γ1 representing the income elasticity of non-response (i.e., how
much response probabilities decrease with an increase in incomes of 1%). For a
given value of such elasticity, γ0 serves as an intercept to assure the continuity of
ϕ(yi; γ0, γ1, t, α) at t. Similarly to right-truncation, the parameter α represents the
(constant) response probability for units with incomes below the t-th percentile.
Moreover, this reweighting scheme includes the right-truncation ϕ(y(i); t, α) as the
limiting case γ1 → ∞. Figure 2 provides an illustrative example of how these two
cases relate and their resulting contrasts with the population’s income distribution.
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Figure 2: Income-proportional reweighting schemes
Note: A population income distribution following yi ∼ GB2(2.75, 100, 1.75, 1.25) and its corre-
sponding CDF under two cases of income-proportional non-response schemes: Right truncation,
with parameter values set at (α, t) = (.8, .95), and income-proportional with parameter values
(γ1, α, t) = (3.75, .8, .95) which requires γ0 = 20.92 for continuity. Solid lines represent respec-
tive CDFs, on the left axis, and dashed lines represent response probabilities, on the right axis. The
dashed vertical line represents the t-th population percentile.

3.3 Jointly accounting for high-income under-reporting and
non-response.

Both replacing and reweighting corrections may interact within this framework. Response
probabilities are modeled as a function of true incomes y, yet these may differ from
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observed incomes yObs following an assumed form for m−1(yObsi ,X i;η). The interaction
allowing for modeling MNAR non-response mechanisms through observed incomes
directly simply amounts to the composite function ϕ(m−1(yObsi ,X i;η),X i;ν).

A crucial question this parametric framework allows to answer is: given i) an assumed
form for the population income distribution fy(.;θ), ii) an assumed income reporting
form m(yi,X i;η), and iii) an assumed response probability function ϕ(yi,X i;ν), then
what distribution fyObs(y

Obs
i ;θ,η,ν) will observed incomes under this framework follow?

This distribution can be derived applying the deterministic transformation m−1(.;η)
to fy(.;θ) and reweighting the resulting density by the response probabilities ϕ(.;ν),
yielding the relationship5:

fyObs(y
Obs
i ;θ,η,ν) =

Reporting function: Replacing transformation of y︷ ︸︸ ︷
fy(m−1(yObsi ;η);θ)×

(
∂m−1(yObsi ;η)

∂yObsi

)
×

Non-response: Reweighting of fy︷ ︸︸ ︷
ϕ(m−1(yObsi ;η);ν)∫

fy(m−1(yObsi ;η);θ)× ϕ(m−1(yObsi ;η);ν)×
(
∂m−1(yObsi ;η)

∂yObsi

)
dyObs︸ ︷︷ ︸

Normalizing constant

.

(1)
The main application of the result in (1) is that of parametrically integrating all

assumptions about the population income distribution and the MR issues affecting
the data in a model for the observed data itself. In doing so, this model for the data
constitutes a case of continuous model expansion to accommodate for non-response
and/or measurement errors (e.g., see Nandram and Choi 2002, Gustafson 2005, Gelman
et al. 2013, Chapter 7). In particular, the parametric income distribution model fy(.;θ)
is expanded by the inclusion of parametric MR forms defining a continuum of possible
corrections for under-reporting or non-response and including the specific case where
no such issues affect the observed data. Fitting such a model to data is an attempt at
separately identifying characteristics of the population income distribution, captured
by the θ vector, and features representing the MR forms presumed to affect the data,
captured by the η and ν vectors.

There are several virtues to integrating the replacing and/or reweighting corrections
considered relevant into a model to be taken to the data as-is. Firstly, because the
correction quantities are completely defined through η and/or ν this approach guarantees
that all corrections are done on the income concept and population being analyzed.
This avoids the issue of manipulating these concepts to be compatible with correction
quantities defined in terms of different income concepts or population. On a related note,
if external data informative on the forms and magnitudes of MR are available then these
should be introduced by specifying adequate representations m−1(yObsi ;η) and ϕ(yObsi ;ν)
and setting η and ν to quantify these magnitudes.

A second virtue of this integrated approach is that uncertainty on the parameter
values or estimates of these may be translated into uncertainty on distributional statistics
like the Gini coefficient. Importantly, this can produce estimates of the population’s

5For simplicity and without loss of generality, only non-response forms of the type ϕ(.;η) ≡ ϕ(yi;η)
are considered in what follows.
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income distribution which account for the uncertainty surrounding the possible MR
issues affecting the available data. Additionally, from a same set of parameter estimates
both corrected and non-corrected distributional estimates may be computed in the
interest of gaining insight on the impact of the corrections considered in terms of the
estimated population’s income distribution6.

Thirdly, the ’building blocks’ nature of the framework allows for exploring several
candidate forms for replacing and/or reweighting corrections leaving other components
unchanged in a straightforward manner. In particular, this allows for studying the ro-
bustness of the estimated θ to different assumptions on the form of MR affecting the data.

Finally, stating the model as a properly defined parametric distribution implies that
all observed units are re-weighted under any assumed form for φ(.;ν), either directly
through the reweighting of units prone to non-response in the numerator of (1) (i.e.,
through down-weighting the density at their respective level of income with respect to
the population density) or indirectly through the correction for missing observations
in the normalization constant of (1). This ’indirect’ reweighting accommodates for the
fact that if some units are under-represented in the data due to higher non-response
probabilities then necessarily the rest of units are over-represented and therefore need to
be reweighted under any correction for these non-response probabilities.

Making inference about the features of the population income distribution and the
MR aspects of the data simultaneously poses several challenges. Issues of identifiability,
in particular, require attention as a given model specified following (1) might fit equally
well a sample of observed incomes for very different values of the θ , η , and ν
parameters, making inference on them invalid. The type of continuous model expansion
underlying (1) to introduce uncertainty about the specific form and magnitudes of
the MR issues affecting the data falls in line with previous empirical strategies within
Bayesian inference (e.g., see Nandram and Choi 2002). The use of prior probabilities on
parameter values under a Bayesian approach can overcome some identifiability issues.
The following section details a Bayesian inference approach for this purpose which can
exploit external information on the MR correction quantities in dealing with this.

4 Parameter inference under ’missing rich’

4.1 A Bayesian inference approach

Under the framework developed in the previous section, inference on the population’s
income distribution fy(.;θ) is made through inference on the values of the θ vector given
the sample of observed incomes yObs. This task is considerably less complex whenever
the correction quantities η and ν are given fixed values. However, it is rarely the case

6Corrected distributional estimates correspond to distributional estimates computed from estimates
for θ only and under ν and/or η fixed to correspond to the scenario in absence of MR issues. These
correspond to the estimates of the distribution of true incomes at the population level. Non-corrected
distributional estimates correspond to those computed from estimates for all the model’s parameters in
θ, ν, and/or η. These correspond to the fitted income distribution representing the observed data on
incomes.

15



that sound candidate values for these quantities are available. The central challenge in
learning about the population’s income distribution through θ is therefore to exploit
the framework under an empirical strategy that can properly make inference on these
parameters but also on η and ν at the same time.

To make such inference, the task is to learn about which values for the parameters
θ ∈ Θθ ⊆ Rdim(θ), η ∈ Θη ⊆ Rdim(η), and ν ∈ Θν ⊆ Rdim(ν) are more likely to
have generated the observed data yObs than others within some region of possible values
Θ ≡ Θθ ×Θη ×Θν . In the Bayesian framework, this information takes the form of a
posterior probability distribution π(θ,η,ν|yObs) defined by two main components under
Bayes’ theorem. Firstly, all prior beliefs about the values of the (θ,η,ν) parameters
must be elicited through a prior probability distribution p(θ,η,ν) over Θ. Secondly, for
any fixed value for the parameters (θ̃, η̃, ν̃) the model’s likelihood L(yObs|θ̃, η̃, ν̃) quan-
tifies how likely the observed data yObs is to have been generated from fyObs(.; θ̃, η̃, ν̃)7.
π(θ,η,ν|yObs) is then a probability distribution proportional to the prior probability
distribution updated (or reweighted, equivalently) by the likelihood function:

π(θ,η,ν|yObs) ∝ L(yObs|θ,η,ν)× p(θ,η,ν). (2)

As an evidence-weighted conversion of prior beliefs, the information contained in the
π(θ,η,ν|yObs) posterior distribution can be interpreted as all remaining uncertainty
on the values of (θ,η,ν) after having ’learnt’ from the data through the likelihood
L(yObs|θ,η,ν). Whenever the data are informative about these parameters, the posterior
distribution reflects less uncertainty around their values than that in p(θ,η,ν).

Estimating a posterior distribution π(θ,η,ν|yObs) for the model parameters faces
several complexities. As is usual in most Bayesian inference settings, it is rarely the
case that π(θ,η,ν|yObs) admits a known form given a model L(yObs|θ,η,ν) and a prior
p(θ,η,ν). This is typically circumvented by studying the posterior distribution through
samples generated to converge to π(θ,η,ν|yObs) under the Monte Carlo principle8 or the
Markov Chain Monte Carlo (MCMC) extension of this principle (e.g., see Gelman et al.
2013, Chapter 11).

A second complexity in estimating π(θ,η,ν|yObs) concerns the possible ’non-
identifiability’ of at least some of the parameters in (θ,η,ν). As an illustrative example
of this issue, consider a model specified following (1) with a parameter λθ ∈ θ ruling
the right tail of the fy(.;θ) income distribution and a replacing correction m−1(.;η)
with parameter λη ∈ η also affecting only the right tail. It can be the case that a same
sample of incomes yObs may be equally well fit under two different parameter values

(θ̃, η̃, ν̃) ∈ Θ and (θ̃
′
, η̃′, ν̃ ′) ∈ Θ including (λ̃θ, λ̃η) and (λ̃′θ, λ̃

′
η) respectively. This can

render the model incapable of separately identifying variations in high incomes in yObs

that would occur with changes in λθ and those due to λη.

7For example, in the case of yObs = {yObsi }Ni=1 being N independent observations their joint likelihood

follows L(yObs|θ,η,ν) =
∏N
i=1 fyObs(yObsi ;θ,η,ν)

8The Monte Carlo principle states that any quantity of π(θ,η,ν|yObs) which can be expressed as an ex-

pectation can be studied through a sufficiently large sample of J independent draws {(θ̃
(j)
, η̃(j), ν̃(j))}Jj=1

from this distribution (θ̃
(j)
, η̃(j), ν̃(j)) ∼ π(θ,η,ν|yObs)
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If yObs is not informative about differences in the respective likelihoods L(yObs|θ̃, η̃, ν̃)

and L(yObs|θ̃′, η̃′, ν̃ ′), then prior beliefs on these values will not be updated. The re-

spective posterior probabilities π(θ̃, η̃, ν̃|yObs) and π(θ̃
′
, η̃′, ν̃ ′|yObs) will therefore be

dominated entirely by differences in prior beliefs p(θ̃, η̃, ν̃) and p(θ̃
′
, η̃′, ν̃ ′). If available,

external information about the plausibility of (θ̃, η̃, ν̃) and (θ̃
′
, η̃′, ν̃ ′) may be exploited

to set an informative prior distribution p(θ,η,ν) giving a lower prior probability to
the one set of parameter values less compatible with this external data among the
two. Informative priors are a way of exploiting prior knowledge to justify differences in
posterior densities for parameter values where yObs is uninformative through the model
L(yObs|θ,η,ν).

Returning to the illustrative example above, consider an application of (1) as a model
for a survey’s sample on incomes yObs = {yObsi }Ni=1 integrating a GB2 income distribution
fGB2
y (.;θ) , θ = (α, β, p, q) with a LPU form for m−1(.;η) , η = (p̄, δ). LPU affects

only the tail above the p̄-th percentile of the income distribution, while the p and q
parameters of the GB2 distribution rule its right tail. This allows for identifiability issues
as described above, as there might be configurations ’trading’ values of p and q with
values of p̄ and δ while representing two observably identical income distributions. In
this example, external information might be introduced in the form of prior probabilities
by setting the marginal prior distributions for p̄ and δ around previous empirical findings
on MR issues in similar settings9.

Several sampling algorithms can be devised to obtain samples {(θ̃(j)
, η̃(j), ν̃(j))}Jj=1

from π(θ,η,ν|yObs) under a model following (1) and an informative prior p(θ,η,ν). The
Metropolis-Hastings (MH) algorithm defines a type of MCMC sampler suitable for esti-
mating parametric income distribution models in several contexts (e.g., see Chotikapanich
and Griffiths 2000, Peters and Sisson 2006, Chotikapanich and Griffiths 2008). A standard
MH sampler for the joint parameter vector φ = (θ,η,ν) is possible following algorithm

1 below. Such an MH algorithm yields as output a sample {θ̃(j)
, η̃(j), ν̃(j)}Jj=1 resulting

from a global exploration of the support of π(θ,η,ν|yObs) through local accept-reject
steps. Any j-th, j = 1, ..., J , local accept-reject step is defined by the MH acceptance
probability:

ρ(j) = min

{
1,

π(φ̃
(j)|yObs)× g(φ̃

(j−1)
, φ̃

(j)
)

π(φ̃
(j−1)|yObs)× g(φ̃

(j)
, φ̃

(j−1)
)

}
, φ = (θ,η,ν),

with g(φ̃
(j)
, φ̃

(j−1)
) denoting a candidate function from which the j-th candidate value

φ̃
(j)

is sampled, given the previously retained value φ̃
(j−1)

.

9For example, in their study comparing household survey incomes to linked tax return data for Uruguay
Flachaire et al. (2022) find evidence of progressive under-reporting potentially affecting the survey data
above p̄ = .50. In studying similar linked data for the Austrian case, Angel et al. (2019) find evidence of
progressive under-reporting of wages potentially affecting their survey above the p̄ = .50 percentile. The
degree of progresiveness of under-reporting can be quantified in terms of δ under a linear approximation
to the observed under-reporting patterns.
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Algorithm 1: A Metropolis-Hastings algorithm (MH ).

Initialization:
Until L(yObs|φ(0)) > 0:

1: Sample φ̃
(0)

from p(φ)
Sampling:
for j = 1, ..., J do

2: Sample φ̃
(j) ∼ g(φ, φ̃

(j−1)
) from the candidate g

3: Accept and store φ̃
(j)

with probability:

ρ(j) = min


1,

∝π(φ̃
(j)|yObs) under (2)︷ ︸︸ ︷

L(yObs|φ̃(j)
)× p(φ̃(j)

)× g(φ̃
(j−1)

, φ̃
(j)

)

L(yObs|φ̃(j−1)
)× p(φ̃(j−1)

)× g(φ̃
(j)
, φ̃

(j−1)
)


. e.g., if u(j) ≤ ρ(j) where u(j) is a draw from a Uniform(0, 1) distribution

otherwise store φ̃
(j)

= φ̃
(j−1)

end

A common choice of candidate function is that of the Adaptive Random-Walk
Metropolis (AM ) algorithm (Haario et al., 2001). In this case the proposal g ≡ gΣ is
defined by the following adaptive random walk process:

(θ(j),η(j),ν(j)) ≡ φ(j) ∼ gΣ(j−1)(φ, φ̃
(j−1)

)⇒ φ̃
(j)

= φ̃
(j−1)

+ ε̃(j)

ε(j) ∼ Nd(0,Σ
(j−1))

Σ(j−1) =

{
Σ(0) , if j ≤ J0

sd × 1
(j−1)

(∑(j−1)
i=1 φ̃

(i)
φ̃

(i)′ − i× φ̄φ̄′
)

+ sd × χ× Id , if j > J0 , 0 < χ� 1
,

with φ̄ denoting the mean value of all draws up to and including the (j − 1)-th and with
sd suggested, following Gelman et al. (1996), to be set to sd = 2.42

d
where d is the number

of parameters in φ10.

Under this proposal distribution the j-th candidate value φ̃
(j)

is obtained by sampling
from a multivariate Gaussian distribution centered at the previously retained draw

φ̃
(j−1)

and with covariance matrix Σ(j−1). Being initially set to a given matrix Σ(0), this
covariance matrix starts adapting exploiting all past draws after a sufficiently large initial
period J0 following the sample covariance matrix. An (AM ) algorithm can thus focus
on sampling more densely in regions near values φ̃ with high posterior density and less
densely in regions of low posterior density. It is also possible to extend the scope of the

local accept-reject exploration by sampling M candidates at once from gΣ(j−1)(φ, φ̃
(j−1)

)
in the spirit of the multiple-try Metropolis sampler of Liu et al. (2000).

10As discussed in Haario et al. (2001), the addition of the diagonal matrix χ × Id is needed with an
insignificantly small but non-zero χ to assure the non-singularity of Σ(j−1) and assure the convergence of
the MCMC sampling distribution to π(θ,η,ν|yObs).
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Output {(θ̃(j)
, η̃(j), ν̃(j))}Jj=1 from an MCMC algorithm may be used to diagnose

sampler issues in terms of convergence. One possible expression of convergence issues,
where the retained samples cannot be taken as representative of the posterior distribution
they target, is that of non-stationarity with respect to the sample average. Several
traceplots computed on the sampler output can be useful in detecting this issue, such as
the cusum path plots of Yu and Mykland (1998).

4.2 Approximate Bayesian inference through the Generalized
Lorenz curve

Implementing the (AM ) algorithm requires being able to compute the likeli-
hood function L(yObs|θ,η,ν). For a model following (1), the joint likelihood
for a sample of independent microdata yObs = {yObsi }Ni=1 can be computed as
L(yObs|θ,η,ν) =

∏N
i=1 fyObs(y

Obs
i ;θ,η,ν). However, joint likelihood functions for

microdata prone to uncertain measurement error and/or truncation points are often
challenging to compute or study numerically. In particular, deterministic under-reporting
or non-response schemes like LPU or right-truncation that only affect observations
above a fixed threshold income will introduce jumps into fyObs(y

Obs
i ;θ,η,ν) that in

consequence introduce discontinuities in the joint data likelihood L(yObs|θ,η,ν) (e.g.,
see Chernozhukov and Hong 2004). These discontinuities are a function of the observed
data yObs and the model parameters (θ,η,ν). For example, a model including a
right-truncation form for non-response can jump to a joint likelihood value of zero when
evaluated at parameter values (θ,η,ν) which imply a truncation below the highest
observed income(s) in yObs and this case is likely to happen over several different
parameter values. Additionally, a computable likelihood function may not be available
in several contexts, such as when data on incomes is only available at group level (e.g.,
see Kobayashi and Kakamu 2019, Eckernkemper and Gribisch 2021).

In devising a more flexible implementation of the (AM ) sampling idea in light of
the potentially high complexity of the likelihood function one possibility is to focus on
a different representation of the income distribution. Instead of opting for its observed
density fyObs(.;θ,η,ν) the model and data can be represented by their corresponding
Generalized Lorenz curve (GLC). The GLC (Shorrocks 1983, Kakwani 1984) can be
defined as the cumulative of the quantile function below the u-th percentile:

GLC(u;θ,η,ν) ≡
∫ u

0

QyObs(x;θ,η,ν)dx,

where QyObs denotes the quantile function of the parametric model fyObs and where
GLC(1;θ,η,ν) ≡ E[yObsi |θ,η,ν] defines the average observed income. In addition to
allowing for comparisons between income distributions in terms of relative inequality as
any Lorenz curve, the GLC also allows for absolute comparisons in terms of mean incomes.

Opting for the GLC as a representation for the income distribution has as main
advantage a more regular functional form than the underlying density fyObs due to its
cumulative nature. Additionally, the GLC is a representation compatible with both
microdata or grouped data. The main challenge when working under this representation
is that a tractable likelihood function for the GLC is rarely available. However, this
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likelihood function can be approximated in practice whenever a mechanism for simulating
samples from fyObs(.;θ,η,ν) is available.

An empirical GLC may be computed from a sample of observed incomes’ yObs order
statistics as11:

GLCObs
k =

∑k
i=1 y

Obs
(i)∑N

i=1 y
Obs
(i)︸ ︷︷ ︸

sObsk

× 1

N

N∑
i=1

yObs(i)︸ ︷︷ ︸
µObs

=

∑k
i=1 y

Obs
(i)

N
, k = 1, ..., N , GLCObs

0 = 0,

with sObsk denoting the cumulative income share up to the k-th observation in the ordered
sample and µObs denoting the sample average income. As most common formats of
grouped data on incomes allow for computing K < N cumulative income shares and
a sample mean, a grouped-data GLC is simply a subset of the N points {GLCObs

k }Nk=1

from the empirical GLC of its underlying microdata.

Being able to simulate samples of observed incomes ỹObs for given parameter values
following ỹObs ∼ fyObs(.; θ̃, η̃, ν̃) is generally feasible for any typical income distribution
model and non-response or under-reporting forms12. This can be exploited for the
purpose of Bayesian inference on (θ,η,ν) from a sample of observed incomes yObs

represented through their empirical GLC (denoted {GLCObs
k }Nk=1 in what follows)

through a class of simulation-based inference methods known as Approximate Bayesian
Computation (ABC) (e.g., see Kobayashi and Kakamu 2019, Silva 2023).

ABC can approximate the unavailable likelihood function of the GLC
L({GLCObs

k }Nk=1|θ̃, η̃, ν̃) in a non-parametric way through comparing the empirical
GLC from simulated data samples ỹObs (denoted {GLCObs

k (θ̃, η̃, ν̃)}Nk=1) and the
observed {GLCObs

k }Nk=1. This approximation requires a way of assessing how closely the
empirical income distribution {GLCObs

k }Nk=1 resembles data simulated from the model for
any given parameter values (θ̃, η̃, ν̃) ∈ Θ.

The overall degree of discrepancy between the observed and simulated-data empirical
income distributions may be summarized by the following unidimensional metric:

d({GLCObs
k }Nk=1, {GLCObs

k (θ̃, η̃, ν̃)}Nk=1) =
N∑
k=1

|(GLCObs
k −GLCObs

k−1)−(GLCObs
k (θ̃, η̃, ν̃)−GLCObs

k−1(θ̃, η̃, ν̃))|,

which corresponds to the empirical Wasserstein-1 distance (Kantorovich, 1939) in the case
of microdata13. Explored in the context of ABC by Bernton et al. (2019), this distance

11In the case of microdata samples from surveys with income-ordered weights {w(i)}Ni=1 the weighted
empirical GLC may be computed similarly as:

GLCObsk =

∑k
i=1 y

Obs
(i) w(i)∑N

i=1 y
Obs
(i) w(i)

× 1∑N
i=1 w(i)

N∑
i=1

yObs(i) w(i) =

∑k
i=1 y

Obs
(i) w(i)∑N

i=1 w(i)

, k = 1, ..., N , GLCObs0 = 0.

12For simplicity, it is assumed in what follows that simulated data are in the form of independent
microdata ỹ = {ỹObsi }Ni=1.

13See the derivations in Appendix A for a detailed description of this distance and a grouped-data
implementation of this discrepancy.
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summarizes the absolute discrepancies between all order statistics across observed and
simulated data |yObs(i) − ỹObs(i) | , i = 1, ..., N .

In approximating L({GLCObs
k }Nk=1|θ,η,ν) for an ABC implementation of the (AM )

algorithm, parameter values (θ̃, η̃, ν̃) ∈ Θ yielding simulated data {GLCObs
k (θ̃, η̃, ν̃)}Nk=1

resembling {GLCObs
k }Nk=1 more closely under d(., .) than others should be given larger

importance. This is commonly introduced exploiting a kernel function Kτ giv-
ing increasingly larger weight to parameter values with a lower discrepancy ε ≡
d({GLCObs

k }Nk=1, {GLCObs
k (θ̃, η̃, ν̃)}Nk=1). A common ’smooth’ kernel for this purpose is

the Gaussian kernel (e.g., see Ratmann 2010):

Kgauss
τ (ε) =

1

τ
× 1√

2π
× exp

{
−1

2

( ε
τ

)2
}
, ε ≡ d({GLCObs

k }Nk=1, {GLCObs
k (θ̃, η̃, ν̃)}Nk=1).

Under this kernel the ABC discrepancies are weighted following a Normal distribution
centered at zero (i.e., highest weight is given to values (θ̃, η̃, ν̃) ∈ Θ exactly reproducing
{GLCObs

k }Nk=1), and with a standard deviation given by the bandwidth parameter τ .

By opting for the GLC as representation of the income distribution the tar-
get posterior distribution for Bayesian inference is no longer π(θ,η,ν|yObs) but
π(θ,η,ν|{GLCObs

k }Nk=1). By approximating the likelihood function for the GLC under
the ABC approach this latter target posterior distribution is also approximated. The
ABC target posterior distribution for the parameter vector φ = (θ,η,ν) can be stated
as (Drovandi and Frazier, 2022):

πτ (φ|{GLCObs
k }Nk=1) ∝

∫
RN
Kτ (ε)× L({GLCObs

k }Nk=1|φ) d ˜GLC︸ ︷︷ ︸
Lτ ({GLCObsk }Nk=1|φ)

×p(φ) , ˜GLC = {GLCObs
k (φ)}nk=1,

(3)
with ε ≡ d({GLCObs

k }Nk=1, {GLCObs
k (φ)}Nk=1). The intractable integral defining

Lτ ({GLCObs
k )}Nk=1|φ) may be unbiasedly estimated in practice for any given point φ̃ ∈ Θ

using Z simulated income distributions from the parametric model following:

L̂τ ({GLCObs
k }Nk=1|φ̃) =

1

Z

Z∑
z=1

Kτ (ε
(z)) , ε(z) ≡ d({GLCObs

k }Nk=1, {GLC
Obs;(z)
k (φ̃)}Nk=1) , z = 1, ..., Z,

and where Z is commonly set to Z = 1.

As a bandwidth parameter, τ rules the strictness of the ABC non-parametric
approximation to L({GLCObs

k }Nk=1|φ̃) by defining how the weights Kgauss
τ (ε) decrease

with an increase in the discrepancy ε. The approximation is exact when τ → 0, as only
parameter values which exactly reproduce the observed income distribution are given a
non-zero weight, and τ → ∞ amounts to considering any and all parameter values in Θ
equally likely to have generated the observed data (i.e., the likelihood is approximated as
a flat function).

The ABC posterior distribution πτ (φ|{GLCObs
k }Nk=1) might differ from that in (2) for

several reasons. One first source of differences lies on the quality of the approximation
to the exact posterior distribution π(φ|{GLCObs

k }Nk=1). The main determinant of this is
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the choice for the bandwidth parameter τ . ABC implementations of sampling algorithms
targeting πτ (φ|{GLCObs

k }Nk=1) in the spirit of the (AM ) algorithm pay an increasing
computational cost for a stricter approximation through a lower τ . In practice, the choice
for this bandwidth results from calibrating the sampling algorithm through several initial
runs balancing strictness of the approximation and computational cost.

The second main source for differences between πτ (θ,η,ν|{GLCObs
k }Nk=1) and

π(θ,η,ν|yObs) concerns the possible loss of information due to summarizing the
data through the GLC and not through the microdata directly. If what can be
learnt about (θ,η,ν) from the data represented through the GLC is less than what
can be learnt from microdata then their respective estimated posterior distributions
will differ even when the ABC approximation to the likelihood is exact (i.e., when τ → 0).

Following Silva (2023), an ABC (AM ) algorithm with these settings can be devised
extending the Marjoram et al. (2003) ABC implementation of the (MH ) algorithm.
Algorithm 2 below presents a possible implementation, denoted (ABC-AM ) in what
follows.

Algorithm 2: An AM ABC (ABC-AM ) algorithm.

Initialization:
1: Set Σ(0) , J0 , M , τ

Until Kgauss
τ (ε̃(0)) > 0:

2: Sample (θ̃
(0)
, η̃(0), ν̃(0)) ≡ φ̃(0)

from p(φ̃)

3: Generate {GLCObs
k (φ̃

(0)
)}Nk=1 by simulating from fObsy (.; φ̃

(0)
)

4: Generate ε̃(0) = d({GLCObs
k }Nk=1, {GLCObs

k (φ̃
(0)

)}Nk=1)
Sampling:
for j = 1, ..., J do

5: Sample {φ̃(m)}Mm=1 ∼ gΣ(j−1)(φ, φ̃
(j−1)

) from the candidate gΣ(j−1)

6: Generate {GLCObs
k (φ̃

(m)
)}Nk=1 by simulating from fObsy (.; φ̃

(m)
) , m = 1, ...,M

7: Generate ε̃(j) = min
m∈{1,...,M}

d({GLCObs
k }Nk=1, {GLCObs

k (φ̃
(m)

)}Nk=1) and candidate

φ̃
(j)

= arg min
φ̃

(m)

{d({GLCObs
k }Nk=1, {GLCObs

k (φ̃
(m)

)}Nk=1)}Mm=1

8: Accept and store (φ̃
(j)
, ε̃(j)) with probability:

ρ(j) = min

{
1,

Kgauss
τ (ε̃(j))× p(φ̃(j)

)× gΣ(j−1)(φ̃
(j−1)

, φ̃
(j)

)

Kgauss
τ (ε̃(j−1))× p(φ̃(j−1)

)× gΣ(j−1)(φ̃
(j)
, φ̃

(j−1)
)

}

. e.g., if u(j) ≤ ρ(j) where u(j) is a draw from a Uniform(0, 1) distribution

otherwise store (φ̃
(j)
, ε̃(j)) = (φ̃

(j−1)
, ε̃(j−1))

if j > J0 then
9: Update Σ(j)

end

end

At any j-th step, the (ABC-AM ) algorithm draws M candidate parameter values

{φ̃(m)}Mm=1 from the adaptive proposal gΣ(j−1) , simulates a single income distribution from
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the model for each such candidate, and computes their respective discrepancies with
respect to the observed income distribution. The candidate with the lowest discrepancy

is then taken as the j-th candidate φ̃
(j)

, along with its associated ABC discrepancy ε̃(j),
in the same spirit as Clarté et al. (2021). Finally, the MH accept-reject rule is computed
with respect to the ABC approximation of the likelihood through Kτ (ε̃

(j)).

Together, the parametric framework for income distributions under MR issues
developed in the previous section along with the Bayesian empirical strategy presented
in this section allow for a broad range of applications. The following section illustrates
some of the main income distribution analysis possible under this approach.

5 Applications and examples

5.1 Applications on simulated data

Simulated-data applications can give insight on the performance of the ABC approach
in making inference on (θ,η,ν) in a controlled setting exploiting a model following (1).
Consider a hypothetical population’s income distribution following a GB2 distribution
yi ∼ fGB2

y (.;θ) ≡ GB2(α, β, p, q), with parameters α, p, and q ruling the shape of the
distribution and β ruling the scale. Typically, these parameters are the focus of the
analysis of the income distribution. However, if the available data yObs is presumably af-
fected by any of the MR forms considered in the previous sections, additional parameters
ruling assumed parametric forms for these issues must also be introduced into the analysis.

Assume that microdata samples from this population’s income distribution may
be jointly affected by high-income under-reporting following an LPU scheme with
parameters (p̄, δ) and high-income non-response following a right-truncation scheme with
α fixed to α = 1 and parameter t where t � p̄. Under this joint scheme a model for the
observable data yObs can be obtained applying (1)14:

fyObs(y
Obs
i ;θ, p̄, δ, t) =

fGB2
y

(
m−1(yObsi ; p̄, δ);θ

)
×
(
∂m−1(yObsi ;p̄,δ)

∂yObsi

)
× ϕ(m−1(yObsi ; p̄, δ); t)∫

fGB2
y (m−1(yObsi ; p̄, δ);θ)×

(
∂m−1(yObsi ;p̄,δ)

∂yObsi

)
× ϕ(m−1(yObsi ; p̄, δ); t)dyObs

=
fGB2
y

(
yObsi + 1(yObsi > F−1;GB2

y (p̄;θ))×
(
δ(yObsi −F−1;GB2

y (p̄;θ))

1−δ

)
;θ
)

t× (1− δ × 1(yObsi > F−1;GB2
y (p̄;θ)))

×
1(yObsi ≤ (1− δ)F−1;GB2

y (t;θ) + δF−1;GB2
y (p̄;θ))

t× (1− δ × 1(yObsi > F−1;GB2
y (p̄;θ)))

. (4)

Appendix A presents details on the derivations required for this expression.

14In what follows, F−1;GB2(.;α, β, p, q) denotes the quantile function of the GB2 distribution. For
simplicity of notation, θ = (α, β, p, q) also holds in what follows.
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Equation (4) expands the GB2 distribution to allow for LPU (whenever p̄ � t and
δ > 0) and for non-response in the form of a right-truncation (whenever p̄� t < 1). For
illustrative purposes, a first experiment of interest consists in estimating the posterior
distribution π(θ, p̄, δ, t|yObs) using the (ABC-AM ) algorithm through this model over
a sample of N simulated incomes yObs = {yObsi }Ni=1. In particular, this exercise is most
interesting when the simulated data is effectively affected by LPU and right-truncation
forms of MR jointly.

Benchmark parameter values can be set to
(
α, β

1000
, p, q

)
= (2.3, 10, 1.75, 1.25) and

(p̄, δ, t) = (.5, .15, .99) in this interest15. These correspond to a population income
distribution with an average income of 15054 and a Gini coefficient of 0.348. Data
simulated under this setting corresponds to a sample from a GB2 distribution which
starts being affected by LPU above the median with a slope of δ = .15 and which contains
no observations for units above the .99-th population’s income distribution percentile.

Data can be simulated in this specific case by sampling N
t

incomes from the GB2
distribution and applying the LPU and right-truncation transformations under the
benchmark values. This yields a single random sample of N observed incomes. The
samples used in this exercise were generated in this way, for a hypothetical population of
10000 units (i.e., N = 9900). Figure 3 below illustrates how a sample generated under
this setting relates to the theoretical observed incomes’ distribution fyObs under (4) and
to the respective complete population’s fGB2

y income distribution.
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Figure 3: Population, theoretical, and sample densities for model (4)
Note: Three density curves describing a population’s GB2 income distribution (GB2 in legend),
the observed incomes density function following (4) (fyObs in legend), and kernel density estimate
from an estimating sample generated from this model (N = 9900) (fỹObs in legend). Benchmark

parameter values taken as
(
α, β

1000 , p, q
)

= (2.3, 10, 1.75, 1.25) and (p̄, δ, t) = (.5, .15, .99), with the

left-most vertical dashed line representing the population’s p̄-th income percentile and the right-most
vertical dashed line representing the right-truncation point.

15The benchmark value for β being 10000, it is here scaled by 1000 in the interest of numerical stability
when applying (ABC-AM ).
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Several conditions must be considered in eliciting a joint prior probability distribution
for the model parameters p(θ, p̄, δ, t) in practice. Firstly, this joint prior distribution can
be set as the product of several marginal prior distributions:

p(θ, p̄, δ, t) = p(α)× p
(

β

1000

)
× p(p)× p(q)× p(p̄)× p(δ)× p(t).

Secondly, given the high flexibility of the GB2 distribution it is possible to represent
virtually any specific case of this distribution in a constrained range of parameter values.
In this sense, the marginal prior distributions for the GB2 parameters may be set as
follows:

α ∼ p(α) ≡ Gamma(1, 1)

β

1000
∼ p

(
β

1000

)
≡ Gamma(5, 2)

p ∼ p(p) ≡ Gamma(1, 1)

q ∼ p(q) ≡ Gamma(1, 1).

This amounts to prior beliefs on the shape parameters α, p, and q following a right-skewed
Gamma distribution with mode at the value 1 and to prior beliefs on β

1000
following

another right-skewed Gamma distribution with mode approximately at the value 8.

Thirdly, reflecting a strong prior belief on the presence MR issues in the data, the
(p̄, δ, t) parameters may be given the following prior distributions:

p̄ ∼ p(p̄) ≡ Beta(8, 5)

δ ∼ p(δ) ≡ Beta(1, 5)

(1− t) ∼ p(1− t) ≡ Beta(1, 25).

These reflect empirically-relevant values for the literature using right-truncation forms
for non-response (e.g., see Jorda and Niño-Zarazúa 2019) and that exploring high-income
under-reporting in survey data (e.g., see Flachaire et al. 2022). Importantly, these
prior beliefs also give considerable probability to the ’complete data’ scenario where no
under-reporting or non-response issues affect the sample. This is, it is also made likely
a priori that the observed income distribution may be correctly represented by a single
GB2 distribution without introducing MR phenomena.

Finally, several constraints may be imposed on the elicited joint prior distribution to
further constrain the parameter space. Imposing restrictions for finite variance on the
GB2 income distribution amounts to giving 0 prior probability to parameter values with
α < 2

q
and α < −1

p
. Additionally, because under-reported incomes have no relevance if

they correspond to a true income above the truncation point, the restriction t > p̄ is
imposed16. Figure 4 below summarizes these elicited prior distributions for each of the

16Formally, these restrictions impose the following joint prior distribution:

p(θ, p̄, δ, t) = p(α)× p
(

β

1000

)
× p(p)× p(q)× p(p̄)× p(δ)× p(t)×

3∏
i=1

C(i)(θ, p̄, δ, t),
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model’s parameters.
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Figure 4: Prior distributions elicited for the parameters of model (4)
Note: Left: Prior distributions for α, p, and q parameters. Center: Prior distribution for β

1000 .
Right: Prior distributions for p̄, δ, and t parameters.

Applications on a single sample

As a first exercise, three central scenarios are explored applying the (ABC-AM )
algorithm to a single simulated-data sample for clarity of illustration. Firstly, to
evidence the possible biases that these forms of MR may induce if the issue is not
taken into consideration, a simple GB2 distribution is fit to the data. A second
scenario consists of estimating the income distribution parameters (α, β, p, q) under (4)
conditional on fixing the correction quantities (η,ν) = (p̄, δ, t) at their true values.
Finally, a third scenario consists of estimating all parameters in (4) eliciting prior
uncertainty in (η,ν). In all cases, the algorithm is set with parameters τ = 25, M = 10,
Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000 MCMC samples are obtained,
taking the initial J0 = 50000 draws as the burn-in period where the algorithm’s adaptive
terms are calibrated. For computational ease, the simulated data taken as estimating
sample was summarized by its GLC computed at sample centiles {GLCObs

k }100
k=1 which

provides a highly detailed summary of the overall sample {GLCObs
k }Nk=1.

Figure 5 below illustrates for all three scenarios explored the goodness-of-fit of the
resulting posterior distribution estimates in terms of their fit to the true pdf for this
simulated sample of observed incomes computed under (4)17. These estimated posterior

with 
C(1)(θ, p̄, δ, t) = 1

(
α > 2

q

)
C(2)(θ, p̄, δ, t) = 1

(
α > − 1

p

)
C(3)(θ, p̄, δ, t) = 1 (t > p̄)

.

17The posterior distribution for the pdf coordinates π
f
yObs

τ (fyObs(.;θ, p̄, δ, t)|yObs) is computed in what

follows from the retained samples from the parameters’ posterior distribution {
(
θ(j), p̄(j), δ(j), t(j)

)
}Jj=1

as {fyObs(yObsi ;θ(j), p̄(j), δ(j), t(j)}Jj=1 with fyObs following (4) and with p̄(j), δ(j), t(j) taking a same fixed
value when no uncertainty is introduced on these parameters.
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distributions are summarized in each case by their corresponding 95% Highest Posterior
Density Interval (HPDI)18 which constitutes an interval estimate of the pdf at each level
of incomes in the range of the estimating sample yObs.

As a first remark, the figure illustrates that a simple GB2 model, corresponding to
fixing (p̄, δ, t) = (1, 0, 1), is insufficient in this case to accommodate for the relatively high
complexity of the observed-incomes distribution, producing results which under-estimate
the mass of top incomes and which over-estimate the mass of incomes at the mode of
the distribution as well as at the middle-high incomes region. Secondly, both scenarios
which allow for the possibility of MR issues affecting the sample achieve a good fit to
the true pdf with a higher degree of uncertainty at the mode of the distribution in the
case where prior uncertainty is elicited for the MR parameters (p̄, δ, t). Only in these
two latter cases the true pdf is contained within the computed HPDI(.95) credibility
intervals all along the income distribution.

Estimated ABC marginal posterior distributions for each of the income distribution
parameters in (4) are summarized in figure 8 in Appendix A. As a first observation, all
scenarios yield posterior distribution estimates which significantly differ from the elicited
prior distributions, effectively updating these prior beliefs. A most relevant result is
the strong bias of parameter estimates obtained without considering MR issues. In
this scenario the α shape parameter is under-estimated while the scale parameter β
and the shape parameters p and q are all over-estimated. In contrast, both scenarios
correcting for these issues yield estimated posterior distributions centered at their true
value. Additionally, introducing uncertainty on the (p̄, δ, t) parameters yields posterior
distributions for the income distribution parameters which reflect only slightly higher
uncertainty than the respective estimates obtained under the known true values for
these. Finally, insight on the performance of the (ABC-AM ) sampler underlying these
marginal density estimates can be obtained from traceplots illustrating the sequence
of draws from the algorithm. For the more complex case where MR parameters are
uncertain a priori, the traceplots presented in figure 8 suggest a stable behavior of the
MCMC sampler around the respective parameter’s true value after the initial burn-in
period, not providing any evidence of convergence issues.

18A 95% highest posterior density interval (HPDI(.95)) may be estimated summarizing a region of
values for the posterior predictive distribution of the pdf at any fixed income level yObs with estimated

posterior density π
f
yObs

τ (fyObs(yObs;θ, p̄, δ, t)|yObs) above a threshold c ∈ (0, 1). In the case of a unimodal
posterior distribution, this c defines the narrowest continuous interval of values accumulating an estimated
posterior mass of .95 on the posterior distribution represented by {fyObs(yObs;θ(j), p̄(j), δ(j), t(j)}Jj=1. This
is equivalent to identifying a threshold value c defining the interval of values with estimated posterior
densities above it:

HPDI(.95) =

{
fyObs(yObs;θ, p̄, δ, t) :

∫
(π
f
yObs

τ (x|yObs) ≥ c)× π
f
yObs

τ (x|yObs)dx = .95

}
.

HPDI(.95) then provides an interval estimate for fyObs(yObs;θ, p̄, δ, t) from integrating information on
the estimated joint parameter posterior distribution πτ (θ, p̄, δ, t|yObs).
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Figure 5: Sample and ABC posterior predictive pdf estimates for model (4) on a simulated
sample.

Note: Observed incomes density function following (4) for a simulated sample of N = 9900 incomes

under parameter values
(
α, β

1000 , p, q
)

= (2.3, 10, 1.75, 1.25) and (η,ν) = (p̄, δ, t) = (.5, .15, .99)

in solid black. ABC HPDI(.95) interval-estimates for this pdf plotted in dashed curves. Es-
timates obtained applying the (ABC-AM) algorithm separately: without MR corrections (i.e.,
(p̄, δ, t) = (1, 0, 1) corresponding to a GB2), conditional on the true (p̄, δ, t) = (.5, .15, .99) cor-
rection parameters, and with prior uncertainty on these. In all cases, the algorithm is set with
parameters τ = 25, M = 10, Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000 MCMC

samples {
(
θ(j), p̄(j), δ(j), t(j)

)
}250000j=1 were obtained ({θ(j)}250000j=1 in the first two cases), taking the

initial J0 = 50000 draws as the burn-in period.

For the scenario where (p̄, δ, t) are uncertain a priori and are therefore also to be
inferred from the data, figure 9 in Appendix A summarizes the estimated posterior
distributions for these parameters. The estimates showcase a significant update of the
elicited prior distributions, with posterior distributions centered at the true values for
these correcting quantities. This result provides support of the ABC approach as a
fruitful empirical strategy for parametric inference on income distributions through data
affected by MR issues of uncertain magnitude.

One additional illustration that this exercise provides concerns the impact of account-
ing for MR issues in the available data when making inference on income growth and
inequality at their respective population levels. Figure 6 below presents the posterior
predictive distributions of the population’s mean income, which is often used to track
aggregate income growth across time, and Gini coefficient of inequality. Both statistics
are determined by the (α, β, p, q) coefficients alone under a GB2 distribution, following
expressions denoted GGB2(α(j), p(j), q(j)) and µGB2(α(j), β(j), p(j), q(j)) in what follows, as
derived in McDonald and Ransom (2008) and implemented in Graf and Nedyalkova.
(2015).
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Figure 6: Posterior predictive estimates of population mean income and Gini coefficient

0 50000 100000 200000

1
4

0
0

0
1

5
5

0
0

13500 14500 15500

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

D
e

n
s
it
y

μ

Known (η ,ν)
Unknown (η ,ν)

GB2

0 50000 100000 200000

0
.3

2
0

.3
6

0.28 0.30 0.32 0.34 0.36 0.38

0
2
0

4
0

6
0

8
0

D
e

n
s
it
y

Gini

Note: Kernel density estimates for ABC predictive posterior distribution estimates of population
mean income and Gini coefficient computed on a single simulated sample of N = 9900 observed

incomes following (4) under parameter values
(
α, β

1000 , p, q
)

= (2.3, 10, 1.75, 1.25) and (η,ν) =

(p̄, δ, t) = (.5, .15, .99). Estimates obtained applying the (ABC-AM) algorithm separately: without
MR corrections (i.e., (p̄, δ, t) = (1, 0, 1) corresponding to a GB2), conditional on the true (p̄, δ, t) =
(.5, .15, .99) correction parameters, and with prior uncertainty on these. In all cases, the algorithm
is set with parameters τ = 25, M = 10, Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000

MCMC samples {
(
θ(j), p̄(j), δ(j), t(j)

)
}250000j=1 were obtained ({θ(j)}250000j=1 in the first two cases),

taking the initial J0 = 50000 draws as the burn-in period. Traceplots of the underlying MCMC
samples for estimates with uncertainty on (η,ν) below, with burn-in period in gray. True parameter
values in dashed black lines. Both statistics computed as in Graf and Nedyalkova. (2015).

A main implication of these results is illustrated in this figure. These posterior predic-
tive distributions evidence a significant under-estimation of both mean income and income
inequality when neglecting MR issues is inappropriate. Only the scenarios estimated
under a margin for corrections through (p̄, δ, t) achieve estimates for these statistics closely
reproducing their true values at the population level. This provides further evidence
of the biased reading that might be made of a population’s income distribution when
the possibility of MR issues affecting the available data is not integrated into the analysis.

Monte Carlo experiments

Having detailed the performance of the proposed method on a single simulated-data sam-
ple limited by MR issues, a next possible exercise is that of analyzing this performance
across several samples and setups. For this purpose, the same analysis as in the previous
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sub-section was performed over 50 microdata samples of size N/t = 10000 generated
under each of three setups defined as follows. Firstly, in the interest of studying the
performance of the ABC approach under a simpler parametric model affected by MR and
nested in (4), setup I sets the true parameter values to (α, β, p, q) = (2.3, 10000, 1, 1.25),
corresponding to a three-parameter Singh-Maddala population income distribution with
parameters (α, β, q) = (2.3, 10000, 1.25), and (p̄, δ, t) = (.5, .15, .99) which corresponds to
observed income distributions affected by the same MR scenario studied in the previous
sub-section.

Setup II also focuses on the specific case of (4) when the population income
distribution follows a Singh-Maddala distribution (i.e., when p is fixed to p = 1). In this
setup, however, no MR issues affect the simulated samples (i.e., (p̄, δ, t) = (1, 0, 1)). This
serves to addresses the question of whether allowing for the possibility of MR with prior
uncertainty on the corresponding parameters can nonetheless produce unbiased estimates
properly reflecting the lack of such issues in the observed data19.

Finally, setup III reproduces the same situation as explored in the previous sub-
section but over 50 simulated income distributions. This setup serves to illustrate how
the more complex GB2 population income distribution affects the performance of the
ABC method in contrast with the simpler Singh-Maddala setups.

Results obtained under setup I are graphically summarized by figures 10 and 11 in
Appendix A. A first interesting remark concerns the marked differences between the
interval estimates obtained for each of the model parameters under all three estimation
scenarios and the prior distributions elicited for them which evidences that the data
effectively provides information to learn about these parameters and update significantly
the prior beliefs. This observation is particularly relevant for the estimates obtained
under prior uncertainty on the MR parameters (p̄, δ, t) which illustrate that learning
jointly about the population’s income distribution parameters and these MR parameters
affecting the estimating sample occurs across all samples. Secondly, these results also
illustrate the biases affecting those estimates obtained neglecting the possibility of MR
issues in the data. These estimates provide an over-estimated value for the scale of the
population’s income distribution and for the shape parameter q ruling its right tail.
Finally, comparing parameter estimates obtained conditional on the true values for the
high-income LPU and right-truncation affecting the data with those obtained under prior
uncertainty on these illustrates that the latter reflect only slightly larger uncertainty in
their estimated posterior distributions.

Attending to the possibility of model misspecification issues introduced by consid-
ering high-income under-reporting and/or non-response when these do not affect the
sample of observed incomes, results obtained under setup II are illustrated in figures
12 and 13 in Appendix A. These figures compare estimates produced under a simple
Singh-Maddala distribution, obtained as a special case of the GB2 distribution by
fixing the parameter p to p = 1, to those obtained under a Singh-Maddala distribu-
tion affected by LPU and right-truncation MR forms, obtained as a special case of (4)
also by fixing p = 1, on simulated data samples that have not been affected by MR issues.

19Note that in both setups exploiting the Singh-Maddala distribution the initial covariance matrix of
the proposal function for the (ABC-AM ) algorithm is reduced to Σ(0) = diag(.01, .1, .01, .01, .01, .01).
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A main observation that these figures provide is that the ABC method provides
unbiased and precise estimates of the population income distribution’s parameters in
both situations across all samples, with only slightly lower precision when estimates are
produced under prior uncertainty on the MR parameters. This is further illustrated
by the interval-estimates obtained for the (p̄, δ, t) parameters which correctly estimate
a posterior distribution for t heavily concentrated at its true value of t = 1 and for the
under-reporting rate δ heavily concentrated at its true value of δ = 0. Interestingly,
these latter estimates also illustrate that in absence of under-reporting the ABC method
accommodates this by inferring one of the two parameters ruling the LPU form to
represent no under-reporting and is unable to learn about the other parameter. In
this case, this can be seen by posterior estimates for p̄ which closely follow the prior
distribution elicited for this parameter while the posterior distribution for δ significantly
updates the prior beliefs on this parameter to yield a posterior distribution reflecting
negligible levels of high-income LPU, if any.

Figures 14 and 15 in Appendix A illustrate the performance of the proposed ABC
method under (4) for the GB2 population income distribution case. Similarly to what
is illustrated on the case of a single simulated-data sample in the previous subsection,
the resulting estimates only appropriately infer the income distribution parameters when
the possibility of MR issues affecting the observed incomes is considered. Fitting a
GB2 distribution on these simulated samples produces estimates which are biased and,
for some parameters, very imprecise. This is particularly illustrated by the obtained
interval-estimates for the p and q shape parameters which often are incompatible with
the true parameter values underlying the data and which reflect much larger uncertainty
than the respective estimates obtained considering MR issues. When compared to the
Singh-Maddala setups, all resulting posterior distribution estimates show significantly
larger uncertainty and variability across samples which can reflect a loss in precision
due to the introduction of prior uncertainty on the p parameter. Interestingly, the
interval-estimates obtained in this setup for the (p̄, δ, t) parameters ruling the forms of
MR issues explored when these are considered uncertain a priori are almost identical in
terms of precision to those obtained in the analogous scenario under setup I.

5.2 Real data applications:

As an illustrative example on real data, the European Union’s Statistics on Income and
Living Conditions (EU-SILC) provide an interesting household survey setting. EU-SILC
data provides information on people and households within the EU representative at the
country level, covering most countries in the EU yearly since 2005, and under a common
framework defining the exact definitions of incomes and populations to be surveyed.

A key income variable in income distribution analysis on EU-SILC data is household
disposable income under the OECD-modified equivalence scale20 (HX090). This considers

20The OECD-modified equivalence scale computes a household’s size HX050 as:

HX050 = 1 + 0.5× (number of household members aged 14 and over − 1)

+ 0.3× (number of household members aged 13 or less).
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all gross household incomes in the data net of regular taxes on wealth, regular inter-
household transfers paid, and regular taxes on income and social insurance contributions.

Although this aggregate variable includes definitions of income variables that are
common to all countries covered by EU-SILC, the sources from which the data are
obtained differ across cross-sectional waves of data and countries. In particular, while
some countries rely entirely on survey responses to measure these income variables,
other countries source these variable entirely or partially from administrative registers.
These differences in sources across waves and countries introduce large heterogeneities
in the quality of the data in terms of under-reporting as registers are considered more
reliable than survey responses. Additionally, the rising use of register sources determines
that for some countries some of the waves of data are sourced from surveys and other
waves are sourced from register. This can produce trends in the observed income
distributions across waves without necessarily reflecting trends of the true population’s
income distribution.

Although several calibrations are done over EU-SILC samples and sample weights
for enforcing population representativeness on several dimensions, these are not done
on income variables (with the exception of The Netherlands). Recent analysis have
explored MR phenomena on EU-SILC data (e.g., see Hlasny and Verme 2018, Bartels
et al. 2019, Angel et al. 2019, Carranza et al. 2023, Ederer et al. 2022), suggesting
this issue to be present with different magnitudes in all countries and periods studied.
This makes it such that exploiting the provided survey weights for inference on a
country-year’s population income distribution is not exempt of representativeness issues
arising from MR phenomena. In this application, and in the interest on making inference
on a population’s income distribution, EU-SILC data is exploited using the provided
cross-sectional household weights (DB090) alongside the possibility of MR issues in the
available sample of incomes.

Information on non-response rates for each country and wave of EU-SILC is publicly
available through the corresponding quality reports published by the European Commis-
sion. Household non-response rates, in particular, can be informative about the overall
degree of non-response affecting an observed distribution of household incomes. These
rates are computed from a country-level household response rate, which is the product
of address contact rates (i.e., the share of households in the sampling frame that were
successfully contacted) and household response rates (i.e., the share of households in the
sampling frame that completed their survey after being successfully contacted).

Table 1 below summarizes EU-SILC samples for five selected countries (Austria,
Germany, France, Spain, and Italy) and for the 2005, 2007, 2011, and 2016 waves. With
the exception of Germany, all other selected four countries are known to exploit register
data sources on incomes in complementing EU-SILC survey responses, although the
timing and extent of this practice is poorly documented in general (e.g., see information
on EU-SILC income data sources in Jäntti et al. 2013, Carranza et al. 2023, and
Wirth and Pforr 2022). The mean and Gini coefficient for household disposable income
distributions computed using their respective survey weights summarize the observable
trends in growth and inequality across countries and waves. Because these distributions

32



are presumably affected by MR issues, these values may provide a biased estimate
of the corresponding population’s mean and Gini coefficient of incomes. With many
heterogeneities, all countries experienced mean income growth and, with the exception
of Italy, income inequality increased from 2005 to 2016 based on observed incomes alone.
Finally, overall household non-response rates show large disparities across countries and
years in terms of levels and trends, illustrating possible heterogeneities in the incidence
of this issue on the respective observed income distributions.

Table 1: EU-SILC sample descriptives for selected countries

Country Wave N Household non-response rate µObs Gini

Austria (AT)

2005 5146 0.38 20212.24 0.27
2007 6805 0.22 20405.17 0.28
2011 6182 0.23 23948.16 0.29
2016 5992 0.27 26274.72 0.28

Germany (DE)

2005 13078 0.35 18078.73 0.27
2007 14047 − 20084.84 0.31
2011 13473 0.21 21047.33 0.30
2016 13260 0.23 23424.24 0.31

France (FR)

2005 9745 0.16 18237.49 0.29
2007 10485 0.14 18423.25 0.27
2011 11348 0.18 23934.22 0.31
2016 11446 0.17 25788.05 0.30

Spain (ES)

2005 12865 0.28 12289.05 0.33
2007 12234 0.23 13520.56 0.32
2011 12993 0.22 16535.78 0.33
2016 14168 0.20 16151.14 0.34

Italy (IT)

2005 21874 0.15 16648.63 0.33
2007 20809 0.14 17422.81 0.32
2011 19234 0.25 18491.99 0.32
2016 20966 0.21 18839.71 0.32

Source: Own calculations from EU-SILC.
Note: EU-SILC samples for Austria (AT), Germany (DE), France (FR), Spain (ES), and
Italy (IT) from 2005, 2007, 2011, and 2016 waves. Only considers households with reported
household disposable income (HX090) of at least 1 euro. Household non-response rates as
reported in the publicly-available quality reports for each wave. Weighted-sample estimates of
mean incomes (µObs) and Gini coefficients computed using cross-sectional household weights
(DB090).

Under the same settings explored in the simulated data applications, model (4) can
be fit to the EU-SILC samples through the (ABC-AM ) algorithm. In summarizing
the distribution of observed incomes in any given EU-SILC sample through its empirical
GLC survey weights were exploited to compute sample GLC coordinates following the
details in footnote 11 and then only those coordinates corresponding to sample centiles
were retained as estimating data {GLCObs

k }100
k=1. These GLC coordinates summarize the

corresponding country-years’ EU-SILC observed incomes distribution at the population
level and corresponds therefore to the distribution that (4) is a model for.

To obtain estimates of the posterior distributions of interest, the (ABC-AM )
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algorithm was implemented for each and all selected EU-SILC samples. In all cases,
the algorithm was set similarly to the applications explored in simulated data, with
parameters τ = 25, M = 10, Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000
MCMC samples were obtained, taking the initial J0 = 50000 draws as the burn-in period.

In the interest of comparing the resulting estimates with the observed income dis-
tributions in EU-SILC data, posterior predictive distributions of the mean observed
income and the Gini coefficient of observed incomes may be computed for the pop-
ulation and compared with their corresponding weighted-sample values. Without
analytical expressions for these statistics corresponding to model (4) they may be
computed from the simulated observed income distributions corresponding to each
MCMC sample {{GLCObs

k (θ(j), p̄(j), δ(j), t(j))}100
k=1}250000

j=1 . The posterior predictive dis-

tribution of the mean observed income {µObs(θ(j), p̄(j), δ(j), t(j))}J=250000
j=1 can be com-

puted simply as {GLCObs
100 (θ(j), p̄(j), δ(j), t(j))}250000

j=1 while that of the Gini coefficient

{GObs(θ(j), p̄(j), δ(j), t(j))}250000
j=1 can be computed from the associated Lorenz curve co-

ordinates {LCObs
k (θ(j), p̄(j), δ(j), t(j))}100

k=1 with:
LCObs

k (θ(j), p̄(j), δ(j), t(j)) =
GLCObsk (θ(j),p̄(j),δ(j),t(j))

GLCObs100 (θ(j),p̄(j),δ(j),t(j))

GObs(θ(j), p̄(j), δ(j), t(j)) = 2
100
×
∑100

k=1
k

100
− LCObs

k (θ(j), p̄(j), δ(j), t(j)).

Figure 7 below summarizes the resulting estimates in terms of goodness-of-fit to the
weighted-sample mean and Gini coefficient of observed incomes, as well as the esti-
mated values for these corresponding to the population’s GB2 income distribution. In
what follows, the fitted income distribution refers to estimates of the population-level
distribution of observed incomes, which may be affected by MR phenomena, while the
population income distribution refers to estimates of the distribution of ’true’ incomes as
modeled by the GB2 distribution component in (4). As a first observation, the obtained
results for the fitted income distribution reproduce very accurately the levels and trends
of mean observed incomes and Gini coefficients for all waves and countries considered.

Concerning the estimates of each population’s income distribution a first important
result is that these do not match their corresponding estimates fitting the observed in-
comes’ distribution in any case. This suggests that MR corrections are indeed required
under this model in order to fit the observed distributions accurately under (4). Con-
sequently, the estimated GB2 population income distribution parameters imply levels of
mean incomes and inequality above their weighted-sample values. These population level
estimates reproduce similar changes in mean incomes across waves as those in the fitted
distributions, with some increase in the uncertainty around these quantities for the lat-
ter years in the case of France and Italy. Population estimates that reproduce the same
dynamic of mean incomes as those reflected in the fitted distribution of incomes can be
indicative of the total mass of incomes missing in this latter distribution due to MR issues
changing very little across EU-SILC waves.
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As summarized by the Gini coefficient, the income inequality dynamics implied by
these estimates at the population level pose some contrasts with respect to their observed
incomes’ counterpart. In all cases inequality is estimated to be higher at the population
level than what estimates on observed incomes alone suggest. The non-overlap of the
computed credible intervals across population and fitted observed incomes’ estimates of
the Gini provide strong evidence of this. Another observation is that the uncertainty
around the population Gini is relatively stable across EU-SILC waves for all countries,
with strong heterogeneities across countries. This uncertainty is in some cases high
enough to make inequality increases and decreases across time equally likely, as is the
case for the Austrian Gini between the 2011 and 2016 waves. In other cases, however,
the estimates provide clearer evidence of significant increases in income inequality across
periods, as can be seen for France and Germany across 2005 and 2016 waves.

Conditional on the assumed forms for MR issues in these applications, the estimated
parameters can suggest margins where the representativeness of the data changes across
waves. The detailed estimates in table 2 in Appendix B suggest that the right-truncation
parameter t introducing high-income non-response in the model (4) is estimated to be
within the top .1% of the population income distribution in all waves and countries. This
can suggest that significant non-response issues are mostly concentrated on households
within this income group.

Concerning under-reporting issues, these estimates suggest strong heterogeneities in
the share of the population affected by progressive under-reporting and the progressive-
ness of under-reporting across waves and countries. As quantified by the estimates for
the p̄ and δ parameters these are estimated to range from .5401 to .8525, and from .0779
to .3997 respectively across the selected EU-SILC samples. Taken together with the
estimates for t, these results illustrate that fitting the observed income distributions accu-
rately under model (4) always requires jointly correcting for progressive under-reporting
of incomes above the median and for right-truncation non-responses somewhere within
the top .1% of the income distribution.

6 Concluding remarks

Building on previous MR correction methods explored in the literature, a new framework
for parametric inference on income distributions has been explored in this paper. This
framework directly integrates this type of corrections into the process of making inference
on a population’s income distribution by expanding conventional parametric income
distribution models with parametric functional forms for both reporting and non-response
mechanisms. As a model for observed data on incomes presumably affected by MR this
parametric approach then allows for devising empirical strategies to infer jointly features
of the associated population’s income distribution and features of the MR issues in the
data.

In dealing with the several constraints that must be faced in devising an empirical
strategy for this purpose, the ABC approach has been implemented as a suitable method.
This Bayesian estimator allows for updating prior uncertainty on the ’true’ population
income distribution and the often uncertain MR quantities affecting the observed data.
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The main criteria driving inference under this approach is attempting to reproduce the
observed incomes distribution, summarized through its empirical GLC, with simulated
GLCs from the parametric model for this distribution.

The illustrative applications presented in this paper evidence several virtues of the
ABC approach for inference on the parameters of GB2 population income distributions
under data affected by MR. In the Monte Carlo simulated-data setting, the analysis
illustrates the several possible biases affecting inference on a population’s income
distribution when MR issues affecting the observed data are neglected. This experiment
also suggests the ABC approach to be fruitful in learning about uncertain MR quantities
given informative prior beliefs about these. Finally, no particular risks are evidenced in
scenarios allowing for the possibility of MR corrections when these are not affecting the
estimating data and, in particular, the proposed method is able to update prior beliefs
on the MR quantities to correctly reflect that no significant MR corrections are required
in reproducing the observed income distribution.

Applications to cross-sectional EU-SILC data on household disposable income
distributions of Austria, Germany, France, Spain, and Italy between 2005 and 2016
give further insight on the suitability of the framework in a typical household survey
microdata setting. The resulting estimates imply that reproducing the observed income
distributions accurately requires considering some amount of both high-income under-
reporting and non-response phenomena in all settings analysed. These applications
also illustrate how inference on population income distributions can be made under
a priori uncertain MR quantities, uncovering contrasts between most of the observed
incomes’ distribution trends and those inferred for the respective population distributions.

As a first implementation of the framework developed in this paper, however, several
aspects both theoretical and empirical have been left unattended and can propose venues
for future research. Future work could build on these developments firstly by exploring
the empirical strategy implemented in this paper in a linked-data setting where individual
observed incomes from a survey prone to be affected by MR phenomena may be matched
to a corresponding register income from sources presumably less prone to these issues like
fiscal data on incomes. If comparing survey-sourced incomes and register-sourced incomes
evidences some form of progressive under-reporting and high-income non-response, then
estimates obtained under this framework using the survey data alone could be validated
in terms of reproducing MR patterns consistent with these.

In the specific case of the EU-SILC, an additional direction for future work concerns
integrating available external information on the representativeness of the observed
income distribution into the prior beliefs for the MR quantities. In particular, household
non-response rates and information about the specific sources for the observed incomes
for a given wave of data and country can be exploited in setting up informative prior
probabilities. This could help in accounting for possible artificial trends arising from
changes in the sampling or income sources and not from actual changes in the popula-
tion’s income distribution.

Further work seeking to provide better understanding of the possible pitfalls of the
proposed approach could explore further setups in terms of the specified MR parametric
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forms beyond the LPU and right-truncation forms explored in the applications of this
paper. In principle, if several alternative forms are capable of representing similar
patterns of under-reporting and non-response, then estimates obtained under each of
these forms should yield very similar results on the population’s income distribution.
Assessing the robustness of the ABC approach in situations of model misspecification due
to invalid assumptions on the forms of under-reporting or non-response in a Monte Carlo
experimental setting can also provide further insight on the properties of this framework.

Better understanding of the properties of the ABC estimator explored in this paper
could also be achieved by studying calibration schemes for the several parameters in-
volved in applying the (ABC-AM ) algorithm. In particular, calibrating the bandwidth
parameter τ is of key importance as it ultimately rules the strictness of the approximation
to the posterior distribution that inference is made on while at the same time can also
heavily determine the computational cost of achieving samples representative of this
approximation. While a stricter approximation is likely to reduce the uncertainty
reflected in the approximated posterior distribution and so may allow for finer inference
on the income distribution, it is also likely to increase the rejection rate of the MCMC
sampling algorithm as it forces a stronger constraint on which simulated samples are
considered of sufficiently close resemblance to the income distribution observed in the
data. The convergence and efficiency properties of the MCMC sampler, which configure
the overall computational cost of applying the ABC estimator, are not only determined
by the choice for τ but also by the parameters ruling the adaptive proposal function and
so all of them must be taken into account jointly for the purpose of sampler calibration.

Implemented as it is in this paper, the ABC estimator is compatible with applications
exploiting grouped data. Whenever the available data allows for computing coordinates
of the empirical GLC of observed incomes (e.g., when the data is presented in the
widespread form of mean observed incomes for different groups along the income
distribution) then these may be exploited for inference on the income distribution
through comparisons with simulated observed income distributions from the parametric
model corresponding to the same percentiles of the distribution. Studying the possible
losses of quality on the inference that is made on the population’s income distribution
under grouped data of different sizes is an exercise for further extensions of this empirical
strategy.

Another possible future development involves extending the framework to accom-
modate for other non-response or measurement error issues presumably affecting the
distribution of observed incomes. In particular, several studies have evidenced the
existence of differential non-response and income misreporting phenomena in the lower
end of the distribution of observed incomes in household survey data (e.g., see Pedace
and Bates 2000, Mathiowetz et al. 2002, Meyer and Mittag 2019, Angel et al. 2019,
Hlasny et al. 2022, Flachaire et al. 2022). Although the influence of these issues on
estimates of population income inequality might be meager they can introduce important
biases to measures of poverty or income growth of groups at the lower end of the
distribution. Considering these issues jointly with the MR phenomena in a single
parametric framework may provide an interesting approach for making inference on
the population’s income distribution through a yet more comprehensive modelling of
observed incomes.
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Finally, a possible extension of this framework involves making inference on income
distributions of populations defined at aggregate levels such as regions or the globe.
Taking the mixture of all countries’ income distributions, estimates obtained accounting
for MR issues at the country level can be used to study patterns of income growth and
distribution on aggregate levels which also take into account the heterogeneities that
these MR issues can present across countries and years.
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Appendix A

Comparing income distributions through the Wasserstein dis-
tance.

When microdata on a sample of incomes {y(i)}ni=1 is available, we can estimate empirical
quantiles of the income distribution and make inference on a parametric model’s
parameters for the population income distribution by fitting the model at these quantiles.
This is so because quantiles are informative on both shape and scale of the distribution.
This allows for an ABC approach without the need of summarizing the data through a
small set of summary statistics.

The Wasserstein distance, originally developed in Kantorovich (1939), was recently
explored for the purpose of summary-free ABC inference in Bernton et al. (2019) and
Drovandi and Frazier (2022). The distance between an income distribution fy with quan-
tile function F−1

y and a parametric distribution model for this distribution fy(.; θ) with
quantile function F−1

y (.; θ) follows in this case:

Wp(fy, fy(.; θ)) =

(∫ 1

0

d{F−1
y (λ), F−1

y (λ; θ)}pdλ
) 1

p

.

In the case of p = 1 and d(x, y) = |x − y| this can be consistently estimated from the
sample of incomes {y(i)}ni=1 with empirical distribution f̂y and a simulated sample of equal

size {ỹ(i)}ni=1 from the model with empirical distribution f̂y(.; θ) as (e.g., Berthet et al.
2020):

W1(f̂y, f̂y(.; θ)) =
1

n

n∑
i=1

|y(i) − ỹ(i)|.

This latter formulation can be interpreted as a metric comparing all sample order
statistics (i.e., all sample quantiles). In essence, this metric estimates the average
absolute difference between quantiles of the two distributions.

A metric ρ(f̂y, f̂y(.; θ)) may be specified under a similar logic comparing the first-order
differences of all empirical GLC coordinates (i.e., estimates of the quantiles by definition
of the GLC) between these microdata samples instead of order statistics directly. This
amounts simply to taking the Wasserstein distance as defined above:

ρ(f̂y, f̂y(.; θ)) =
n∑
i=1

|(GLC(F̂y(y(i)))−GLC(F̂y(y(i−1))))− (GLC(F̂y(ỹ(i); θ))−GLC(F̂y(ỹ(i−1); θ)))|

=
n∑
i=1

∣∣∣∣( y(i)∑n
i=1 y(i)

)
×
(∑n

i=1 y(i)

n

)
−
(

ỹ(i)∑n
i=1 ỹ(i)

)
×
(∑n

i=1 ỹ(i)

n

)∣∣∣∣
=

n∑
i=1

∣∣y(i) − ỹ(i)

∣∣
n

= W1(f̂y, f̂y(.; θ)),

with F̂y(.) and F̂y(.; θ) denoting the corresponding empirical CDFs for observed and
simulated samples respectively. This result supports the use of the Wasserstein-1
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distance as a common unidimensional discrepancy allowing for ABC inference either with
microdata or grouped data summarized through the GLC.

Under grouped data in the form of K groups’ mean incomes, where observed incomes
are split into K segments of sizes nk with bounds z(k) , k = 0, ..., K+1 , z(0) ≡ 0 , z(K+1) ≡
∞ and a mean income ȳk is provided for each group, we can compute a grouped-data
Wasserstein-1 distance from the corresponding empirical GLC coordinates for each group
in the observed data GLCk and in simulated samples GLCk(θ) as:

ρ(f̂y, f̂y(.; θ)) =
K∑
k=1

|(GLCk −GLCk−1)− (GLCk(θ))−GLCk−1(θ))|

=
K∑
k=1

∣∣∣∣∣
(

ȳ(k) × n(k)∑K
k=1 ȳ(k) × n(k)

)
×

(∑K
k=1 ȳ(k) × n(k)

K

)
−

(
¯̃y(k) × n(k)∑K
k=1

¯̃y(k) × n(k)

)
×

(∑K
k=1

¯̃y(k) × n(k)

K

)∣∣∣∣∣
=

1

K

K∑
k=1

∣∣ȳ(k) × n(k) − ¯̃y(k) × n(k)

∣∣
=

1

K

K∑
k=1

∣∣(ȳ(k) − ¯̃y(k))× n(k)

∣∣
=

1

K

K∑
k=1

∣∣∣∣∣
n∑
i=1

(y(i) − ỹ(i))× I(z(k) ≥ y(i) ≥ z(k−1))× I(z(k) ≥ ỹ(i) ≥ z(k−1))

∣∣∣∣∣ ,
where ¯̃y(k) denotes the k-th group’s mean income in the simulated sample of incomes
and which, in the trivial case of having K = n groups (i.e., one observation per group)
corresponds to the expression for this distance on microdata. These results suggest
that in the case of grouped data we can exploit the discrepancies between GLC curves
through their first-order difference (i.e., through the approximation to the Wasserstein-1
distance) and proceed analogously to the microdata case.

Geometrically, the Wasserstein-1 distance computes the average absolute difference
between the quantile functions of two distributions. When only grouped data is available,
this average distance is approximated in the expressions above by first computing the
area between both empirical quantile curves within each interval of the grouped data,
summing these areas across all intervals and dividing by the number of intervals. The
approximation comes the fact that in computing these areas the curves might cross
within an interval and so we would have no way of accounting for those differences which
counteract within the interval (i.e., the absolute value is applied at the interval level in
the grouped data expression above). For a same population size n, however, the quality
of the approximation always increases with K.

Having access to microdata allows a computationally-cheap alternative in which user-
specified groups or bins can be defined for exploiting the grouped-data approximation to
the Wasserstein-1 distance. For instance, instead of grouping the data on sample deciles,
one could define broader groups for lower incomes and finer groups for higher incomes
allowing for a particularly stricter fit on the upper tail of the distribution.
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Deriving parametric distribution functions with high-income
under-reporting and non-response components

Assuming that microdata samples from a population’s GB2 income distribution may be
jointly affected by high-income under-reporting following an LPU scheme with parameters
(p̄, δ) and high-income non-response following a right-truncation scheme with α fixed to
α = 1 and parameter t where t� p̄, then under this joint scheme:

∂m−1(yObsi ; p̄, δ)

∂yObsi

=
∂
[
yObsi ×

[
1 + 1(yObsi > F−1;GB2

y (p̄;θ))×
(

δ
1−δ

)]]
∂yObsi

=
1

1− δ × 1(yObsi > F−1;GB2
y (p̄;α, β, p, q))

,

ϕ(m−1(yObsi ; p̄, δ); t) =

{
1 , if FGB2

y

(
yObsi + 1(yObsi > F−1;GB2

y (p̄;θ))×
(
δ×(yObsi −F−1;GB2

y (p̄;θ)

1−δ

))
≤ t

0 , otherwise

=

{
1 , if yObsi + 1(yObsi > F−1;GB2

y (p̄;θ))×
(
δ×(yObsi −F−1;GB2

y (p̄;θ)

1−δ

)
≤ F−1;GB2

y (t;θ)

0 , otherwise

=

{
1 , if yObsi ≤ (1− δ)F−1;GB2

y (t;θ) + δF−1;GB2
y (p̄;θ)

0 , otherwise
,

and∫
fGB2
y (m−1(yObsi ; p̄, δ);α, β, p, q)× ϕ(m−1(yObsi ; p̄, δ); t)×

(
∂m−1(yObsi ; p̄, δ)

∂yObsi

)
dyObs = t ,

allow for stating a model for the observable data yObs applying (1):

fyObs(y
Obs
i ;θ, p̄, δ, t) =

fGB2
y

(
m−1(yObsi ; p̄, δ);θ

)
×
(
∂m−1(yObsi ;p̄,δ)

∂yObsi

)
× ϕ(m−1(yObsi ; p̄, δ); t)∫

fGB2
y (m−1(yObsi ; p̄, δ);θ)×

(
∂m−1(yObsi ;p̄,δ)

∂yObsi

)
× ϕ(m−1(yObsi ; p̄, δ); t)dyObs

=
fGB2
y

(
yObsi + 1(yObsi > F−1;GB2

y (p̄;θ))×
(
δ(yObsi −F−1;GB2

y (p̄;θ))

1−δ

)
;θ
)

t× (1− δ × 1(yObsi > F−1;GB2
y (p̄;θ)))

×
1(yObsi ≤ (1− δ)F−1;GB2

y (t;θ) + δF−1;GB2
y (p̄;θ))

t× (1− δ × 1(yObsi > F−1;GB2
y (p̄;θ)))

.

Additionally, in this setting the population-level CDF can be stated as:

FyObs(y
Obs
i ; θ, p̄, δ, t) = Fy

(
yObsi + 1(yObsi > F−1

y (p̄; θ))×

(
δ(yObsi − F−1

y (p̄; θ))

1− δ

))
× 1

t
.
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Simulated data applications: further results
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Figure 8: Estimated ABC marginal posterior distributions for income distribution param-
eters

Note: Kernel density estimates for ABC marginal posterior distribution estimates com-
puted on a single simulated sample of N = 9900 observed incomes following (4) under pa-

rameter values
(
α, β

1000 , p, q
)

= (2.3, 10, 1.75, 1.25) and (η,ν) = (p̄, δ, t) = (.5, .15, .99). Esti-

mates obtained applying the (ABC-AM) algorithm separately: without MR corrections (i.e.,
(p̄, δ, t) = (1, 0, 1) corresponding to a GB2), conditional on the true (p̄, δ, t) = (.5, .15, .99)
correction parameters, and with prior uncertainty on these. In all cases, the algorithm is set
with parameters τ = 25, M = 10, Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000

MCMC samples {
(
θ(j), p̄(j), δ(j), t(j)

)
}250000j=1 were obtained ({θ(j)}250000j=1 in the first two

cases), taking the initial J0 = 50000 draws as the burn-in period. Traceplots of the un-
derlying MCMC samples for estimates with uncertainty on (η,ν) below, with burn-in period
in gray. True parameter values in dashed black lines.
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Figure 9: Estimated ABC marginal posterior distributions for MR parameters
Note: Kernel density estimates for ABC marginal posterior distribution estimates com-
puted on a single simulated sample of N = 9900 observed incomes following (4) under

parameter values
(
α, β

1000 , p, q
)

= (2.3, 10, 1.75, 1.25) and (η,ν) = (p̄, δ, t) = (.5, .15, .99).

Estimates obtained applying the (ABC-AM) algorithm with prior uncertainty on the
MR parameters (η,ν) = (p̄, δ, t). The algorithm was set with parameters τ = 25,
M = 10, Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J = 250000 MCMC samples

{
(
θ(j), p̄(j), δ(j), t(j)

)
}250000j=1 were obtained, taking the initial J0 = 50000 draws as the burn-

in period. Traceplots of the underlying MCMC samples below, with burn-in period in gray.
True parameter values in dashed black lines.
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Appendix B

EU-SILC application.

Table 2: ABC posterior distribution estimates for selected EU-SILC samples under (4)

Country Wave
θ η ν

α β
1000

p q p̄ δ t (%)

Austria (AT)

2005
4.4926 17.4491 0.7689 0.6995 0.6481 0.1394 99.9212

[3.4804;5.4754] [16.4642;18.3747] [0.5323;1.0381] [0.4948;0.887] [0.5588;0.7402] [0.0604;0.219] [99.8606;99.9774]

2007
4.2329 17.497 0.8706 0.7848 0.6917 0.1654 99.9987

[3.3264;5.6431] [16.3194;18.3236] [0.5311;1.1924] [0.5149;0.9549] [0.5881;0.809] [0.0536;0.2412] [99.996;100]

2011
4.4908 22.5277 0.6266 0.7225 0.6646 0.1145 99.9475

[3.6792;5.4883] [21.8214;23.2466] [0.4651;0.7952] [0.5291;0.8909] [0.5484;0.7882] [0.0464;0.1831] [99.9076;99.9806]

2016
4.1521 23.2533 0.7947 0.76 0.6726 0.2252 99.9989

[3.2317;5.3752] [21.3724;24.4954] [0.5194;1.1763] [0.5472;0.9347] [0.6233;0.7313] [0.1611;0.2871] [99.9969;100]

Germany (DE)

2005
4.1816 15.6159 0.8099 0.7151 0.5401 0.2318 99.9992

[3.243;5.0834] [14.7938;16.395] [0.5691;1.076] [0.5477;0.8938] [0.4771;0.6122] [0.1642;0.304] [99.9974;100]

2007
5.1701 17.1657 0.5078 0.4937 0.7639 0.2838 99.999

[4.464;5.8984] [16.7115;17.6088] [0.4107;0.6081] [0.4123;0.5753] [0.7268;0.7959] [0.2277;0.3407] [99.9966;100]

2011
4.2773 18.1032 0.6265 0.5993 0.7678 0.3997 99.9995

[3.5422;5.1335] [17.45;18.8769] [0.4699;0.8126] [0.4394;0.7026] [0.7408;0.7945] [0.3482;0.4484] [99.9982;100]

2016
4.3893 20.3698 0.5862 0.5884 0.773 0.3453 99.9995

[3.8794;4.8718] [19.8252;20.9009] [0.4868;0.6795] [0.5204;0.6677] [0.7527;0.7889] [0.3142;0.3776] [99.9985;100]

France (FR)

2005
2.9131 13.4956 1.6066 1.1055 0.6539 0.1383 99.9923

[2.3348;3.4636] [11.8554;14.9544] [1.0129;2.3224] [0.8676;1.3669] [0.573;0.726] [0.0741;0.2019] [99.9772;100]

2007
3.9296 15.6607 0.9887 0.8818 0.8525 0.1446 99.9892

[3.2279;4.6694] [15.1527;16.1589] [0.7278;1.2634] [0.6438;1.1277] [0.7985;0.9022] [0.0458;0.249] [99.9691;100]

2011
4.4173 17.8792 0.8398 0.6043 0.5919 0.0779 99.9853

[3.2817;5.1189] [16.9069;18.7775] [0.5991;1.1511] [0.464;0.748] [0.4136;0.716] [0.011;0.1361] [99.9702;99.9978]

2016
5.4397 18.4294 0.9048 0.5048 0.5747 0.2963 99.9996

[2.9187;8.3704] [16.2994;20.3333] [0.3647;1.6694] [0.2796;0.7936] [0.4268;0.7176] [0.2481;0.3755] [99.9988;100]

Spain (ES)

2005
1.6968 11.0949 2.2101 2.3738 0.7627 0.2002 99.9714

[1.2934;2.1302] [9.2004;12.9569] [1.2547;3.3318] [1.4735;3.414] [0.7141;0.8138] [0.1207;0.2806] [99.9194;100]

2007
1.6921 12.7219 2.2679 2.5442 0.7057 0.1481 99.9733

[1.2519;2.1322] [10.3523;14.8156] [1.2379;3.5877] [1.6421;3.6412] [0.637;0.7789] [0.0696;0.2237] [99.9272;100]

2011
2.5284 14.8681 1.0773 1.2021 0.8243 0.2938 99.9946

[2.1636;2.9317] [13.9019;15.8051] [0.8016;1.3675] [0.9435;1.4661] [0.7939;0.856] [0.2314;0.3629] [99.983;100]

2016
2.5723 17.8008 0.8678 1.4029 0.82 0.1248 99.9909

[2.2547;2.9011] [16.8279;18.7658] [0.7037;1.0366] [1.1189;1.6883] [0.7653;0.8743] [0.0639;0.191] [99.9731;100]

Italy (IT)

2005
3.4764 14.038 0.7882 0.7659 0.6818 0.2253 99.9889

[2.8887;4.0841] [13.2232;14.817] [0.5732;1.0109] [0.613;0.9184] [0.6362;0.7277] [0.165;0.2872] [99.9745;100]

2007
2.9708 14.818 0.9931 0.972 0.6871 0.2037 99.9596

[2.3382;3.6742] [13.5246;16.1084] [0.6399;1.4089] [0.7172;1.2408] [0.6274;0.7446] [0.132;0.2773] [99.9203;99.9933]

2011
4.1234 17.1416 0.5719 0.6735 0.6788 0.1961 99.9985

[3.4491;4.8556] [16.4914;17.757] [0.4288;0.7125] [0.5503;0.7979] [0.6229;0.7496] [0.1454;0.2515] [99.9946;100]

2016
3.3105 19.1832 0.7476 0.9856 0.5769 0.1915 99.9738

[2.319;4.7316] [18.358;20.2492] [0.381;1.1051] [0.5918;1.3342] [0.5323;0.6323] [0.0879;0.2723] [99.9444;99.9994]

Source: Own calculations from EU-SILC.
Note: ABC posterior mean estimates of all parameters of model (4) for Austria (AT), Germany
(DE), France (FR), Spain (ES), and Italy (IT) from 2005, 2007, 2011, and 2016 EU-SILC waves.
Only considers households with reported household disposable income (HX090) of at least 1 euro.
Respective 95% HPDI in brackets. Estimates obtained applying the (ABC-AM) algorithm in all
cases, set with parameters τ = 25, M = 10, Σ(0) = diag(.01, .1, .01, .01, .01, .01, .01), and J =

250000 MCMC samples {
(
θ(j), p̄(j), δ(j), t(j)

)
}250000j=1 were obtained, taking the initial J0 = 50000

draws as the burn-in period.
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