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I. Introduction

Private transfers of money, time and other resources represent a large portion of our

economies. For instance, aggregate private transfers received are estimated at 23% of

GDP for Spain in 2000, 30% for the US in 2003, and 54% for the Philippines in 1999 (Lee

& Donehover 2011). In developing countries, remittances alone often represent a significant

portion of these transfers. Remittances received in 2009 are evaluated at 12% of GDP for

the Philippines, 19% for Honduras and 25% for Lesotho (Worldbank 2011). Identifying the

ultimate motives behind these transfers is not an easy empirical task. Still, introspection

as well as an extensive empirical literature show that altruism is a main motivation (De

Weerdt & Fafchamps 2011, Foster & Rosenzweig 2001, Leider et al. 2009). Individuals

give to others they care about. Moreover, and as increasingly recognized by economists,

individuals have different social neighborhoods (Jackson 2008). Thus, private transfers

often flow through altruistic networks.

In this paper, we provide the first theoretical analysis of altruism in networks. We

assume that agents are embedded in a fixed, weighted network and care about their direct

friends. Given some initial distribution of incomes, agents may decide to support their

poorer friends. Incentives to give are intricately linked to the network structure. Gifts

made in one part of the network may depend on gifts received or made in other parts. We

characterize the Nash equilibria of this non-cooperative transfer game.

Our analysis highlights the importance of indirect gifts. In equilibrium, an agent may

give to a friend because his friend himself has a friend in need. Transfers, and incomes

after transfers, ultimately depend on the whole network structure. We uncover four main

features of this interdependence.

Our first main result establishes the uniqueness of incomes after transfers, for any

network and any utility functions.1 This extends the uniqueness result obtained by Arrow

(1981) for groups to arbitrary weighted networks. In contrast, there are typically multiple

1Utility functions may differ between agents. They must be twice continuously differentiable, strictly
increasing, strictly concave and satisfy an assumption guaranteeing that an agent never gives to a richer
friend, see Section II.
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equilibria in transfers. We show that uniqueness in transfers holds on trees, which means

that multiplicity is related to the presence of cycles in the network. We also characterize

the mathematical structure of the equilibrium set.

Second, our analysis reveals a principle of economy in transfers at work in altruis-

tic networks. The interplay of individual giving decisions somehow eliminates waste in

transfers. We derive two formal results in support of this intuition. First, we show that

transfers must flow through paths of highest altruistic strength. When all links have the

same strength, it means that transfers flow through shortest paths of the network. Thus,

transfers cannot take roundabout ways to connect two agents. Second, we find that, con-

ditional on equilibrium incomes, equilibrium transfers must minimize a weighted sum of

transfers. When all links have the same strength, equilibrium transfers simply minimize

the aggregate transfer needed to reach equilibrium incomes.

Third, we study how incomes after transfers depend on initial incomes. We establish

a natural monotonicity property of altruistic networks. If an agent suffers a loss in initial

income, his income after transfers decreases while the income of every other agent either

decreases or stays unchanged. In altruistic networks, one agent cannot gain from the loss

of another. Moreover, the shock affects socially closer agents first. We then look at income

redistributions. We find that a Pigou-Dalton redistribution from richer to poorer can end

up increasing inequality. This happens when the initial redistribution removes resources

from an agent playing an important supporting role in his local neighborhood. This result

may have important implications for the design of public policies in altruistic societies.

Fourth, we study how income inequality depends on the structure of the network.

We first show that altruistic networks decrease inequality, in the sense of second-order

stochastic dominance. Furthermore, an increase in altruism tends to reduce the maximal

income spread. However, an increase in altruism can also lead to an increase in income

variance. New links can help relieve financial demands on one part of the network; this may

improve the situation of rich agents and may increase variance. We then study the impact

of homophily, the tendency of similar people to be connected and a key structural feature

of social networks (McPherson, Smith-Lovin & Cook 2001). We find that homophily with
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respect to income tends to generate more inequality. Moreover, this relation is subject

to “small-world”effects. The first few links connecting the poor and the rich can have a

dramatic impact on inequality reduction. This is a consequence of indirect gifts, as the

connected poor help out unconnected ones.

Finally, we obtain further results when preferences satisfy Constant Absolute Risk

Aversion (CARA). We uncover the existence of a potential function in that case and provide

a characterization of Nash equilibria as solutions of a convex minimization program.

Our analysis contributes to at least three literatures concerned, respectively, with al-

truism, private transfers, and social networks.

Our paper, first, introduces social networks to the economics of altruism initiated by

Becker (1974) (Kolm & Mercier Ythier 2006). Most analysis in this literature consider

altruistic individuals interacting in pairs (Alger & Weibull 2010, Bernheim & Stark 1988,

Stark 1995). In a pioneering study, Arrow (1981) analyzes the transfer game for groups

of any size and when every agent cares equally for everyone else. We essentially extend

his analysis to arbitrary weighted networks. We show that income uniqueness holds in

general. In contrast, many other features of the equilibria highlighted by Arrow are not

robust to changes in the social structure. For instance an agent can both give and receive

in an altruistic network in equilibrium, and income rankings can be reversed. In addition,

the techniques developed by Arrow to solve his model do not extend to arbitrary networks.

We discuss his results and the relationship between his analysis and ours in more detail in

Section III. Overall, we find that the network has a first-order impact on outcomes in an

altruistic society.

Second, our analysis contributes to the economic literature on private transfers. Follow-

ing Townsend (1994), empirical studies typically find that risk sharing in rural communities

in developing countries is good but imperfect (Mazzocco & Saini 2012). One mechanism

explored by economists to explain this finding is that households trade informal insur-

ance possibilities but that trade is constrained by a lack of commitment ability (Dubois,

Jullien & Magnac 2008, Ligon, Thomas & Worrall 2002). However, altruism provides an

alternative explanation (Cox & Fafchamps 2008). Distinguishing altruism from exchange
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is empirically challenging (Arrondel & Masson 2006). Still, exchange cannot explain pure

redistribution when money always flow in the same direction.2 In contrast, altruism can

explain redistribution as well as good but imperfect risk-sharing. And indeed, altruism

does seem to be a main motive behind transfers.3

In addition, detailed studies on gifts and loans find that transfers generally flow through

social networks (De Weerdt & Dercon 2006, Fafchamps & Gubert 2007, Fafchamps &

Lund 2003). People help their family, friends and neighbors in case of need. Building on

these insights, a recent theoretical literature has studied risk sharing in networks where

transfers, by assumption, must flow through social links.4 The study most related to ours is

Ambrus, Mobius & Szeidl (2013). Authors consider a fixed, weighted network and assume

that links have monetary values which can be used as social collateral. These values

limit the amount of money that can flow through links. They characterize the Pareto-

constrained risk-sharing arrangements. In contrast, we characterize the Nash equilibria of

a non-cooperative transfer game. Transfer schemes in their setup and in ours share some

common features. In particular, they both satisfy monotonicity with respect to incomes

and the fact that socially closer agents are more affected by a shock. As discussed in

Ambrus, Mobius & Szeidl (2013), these two features are consistent with empirical findings

of Angelucci & De Giorgi (2009) and Angelucci, De Giorgi & Rasul (2012). The two

models also yield different predictions.5 In Ambrus, Mobius & Szeidl (2013), small shocks

are perfectly insured while large shocks are not. And small shocks can trigger arbitrarily

long transfer chains. In contrast, in altruistic networks small shocks usually do not elicit

network support while large shocks do. And transfer chains are of bounded length.

To sum up, we develop and study one of the first economic models able to explain good

2Exchange is consistent with redistribution in expectations, but not with redistribution in all states of
the world.

3Empirical studies finding evidence of altruism include Agarwal & Horowitz (2002), De Weerdt &
Fafchamps (2011), Foster & Rosenzweig (2001), Kazianga (2006), Leider et al. (2009), Ligon & Schechter
(2012), Mitrut & Nordblom (2010).

4Bloch, Genicot & Ray (2008) and Bramoullé & Kranton (2007a,b) analyze network stability in various
risk sharing contexts. In contrast, we take the network as given in our approach.

5A further distinction is that, in a network with n agents and L links, Pareto-constrained risk sharing
arrangements depend on L+n−1 parameters: the link values and the Pareto weights. In contrast, incomes
after transfers in altruistic networks only depend on L parameters: the links’altruistic strengths.
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but imperfect risk-sharing, redistribution and transfer flows through social networks.

Applied researchers have recently explored yet another motive that could explain private

transfers. People may give to others because they conform to redistributive social norms

(Baland, Guirkinger & Mali 2011). We note here that our results ultimately depend on

the best-replies rather than the preferences. Therefore, our whole analysis also applies to

a society prescribing to act towards family and friends as if truly altruistic.

Finally, our paper contributes to the literature on games played on fixed networks

(Ballester, Calvó-Armengol & Zenou 2006, Galeotti et al. 2008, Bramoullé, Kranton &

D’amours 2013). This literature has, so far, focused on one-dimensional strategies. In

contrast, an individual strategy here is a vector of transfers. This makes our analysis quite

different from the existing studies. Our results for CARA utility functions confirm the

interest of potential functions to study network games emphasized by Bramoullé, Kranton

& D’amours (2013).

The remainder of the paper is organized as follows. We introduce the model and

establish existence in Section II. We illustrate the effect of the network in Section III. We

analyze equilibrium incomes and transfers in Section IV. We study comparative statics

with respect to initial incomes and to the network in Section V and we conclude in Section

VI.

II. The model

We consider a community of n ≥ 2 agents. Agents make private transfers to each other.

Agent i has initial income y0i ≥ 0 and may give tij ≥ 0 to agent j. The collection of

transfers defines a n by n matrix T with non-negative entries. By convention, tii = 0.

Income after transfers, yi, is equal to

yi = y0i −
∑
j

tij +
∑
j

tji (1)

where
∑

j tij represents total gifts made by i and
∑

j tji total gifts made to i. We assume

that yi ≥ 0. Agents are budget-constrained: total gifts made must be lower than or equal

5



to the sum of initial income and of total gifts received. Define S as the set of admissible

transfer profiles: S =
{

T ∈ Rn2+ : ∀i, tii = 0 and
∑

j tij ≤ y0i +
∑

j tji

}
. Since aggregate

gifts made are equal to aggregate gifts received,
∑

i yi =
∑

i y
0
i . Aggregate income is

constant and redistributed through private transfers.

We assume that agents care about each other. Preferences have a private and a social

component. Agent i’s private, or material, preferences are represented by utility function

ui : R+ → R. We assume that ui is twice continuously differentiable and satisfies u′i > 0

and u′′i < 0. Agent i’s social, or altruistic, preferences are represented by utility function

vi : Rn+ → R such that

vi(yi,y−i) = ui(yi) +
∑
j

αijuj(yj) (2)

and ∀i, j, 0 ≤ αij < 1. When αij > 0, i cares about j’s material well-being and the size

of the coeffi cient measures the strength of the altruistic linkage.6 By convention, αii = 0.

The collection of the bilateral coeffi cients αij defines a directed and weighted altruistic

network α. We say that this network is binary when all links have the same strength and

αij ∈ {0, α}.

We make the following joint assumption on private utilities and altruistic coeffi cients:

∀i, j,∀y, u′i(y) > αiju
′
j(y) (3)

This condition guarantees that an agent never gives to a richer friend: tij > 0 ⇒ yi > yj.

This implies, in particular, that the budget constraint never binds and yi > 0 except when

i has no income to give (y0i =
∑

j tji = 0). Assumption (3) provides a counterpart in a

network context to the assumption of “selfish preferences”in Arrow (1981, p. 203). Under

common preferences when ∀i, ui = u, Assumption (3) reduces to: ∀i, j, αij < 1.

The collection of agents, utilities vi, and transfers tij define a non-cooperative game

with joint strategies. Our main objective is to study the Nash equilibria of this transfer

game. Agents simultaneously choose their transfers to maximize their altruistic utilities

6Alternatively, we could consider interdependence in altruistic utilities: vi = ui +
∑
aijvj . Assume

that I−A is invertible, where I is the identity matrix, and let B = (I−A)−1. Then, v = Bu and setting
αij = bij/bii leads us back to our formulation. Our analysis applies as long as ∀i 6= j, 0 ≤ bij < bii.
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subject to their budget constraint. A Nash equilibrium is a matrix of transfers T ∈ S such

that ∀i, ∀T′i ∈ Rn+ such that (T′i,T−i) ∈ S, vi(Ti,T−i) ≥ vi(T
′
i,T−i).

We next present a useful reformulation of equilibrium conditions. Observe that vi

is concave in Ti for any T−i. This implies that the first-order conditions of i’s utility

maximization problem are necessary and suffi cient. Since the budget constraint never

binds, we have:

Lemma 1. A matrix of transfers T is a Nash equilibrium of the transfer game iff

(1) ∀i, j, u′i(yi) ≥ αiju
′
j(yj) and (2) ∀i, j such that tij > 0, u′i(yi) = αiju

′
j(yj).

In equilibrium an agent cannot be much richer than any of his friends. And a positive

transfer must be such that the ratio of the giver’s marginal utility on the receiver’s is

precisely equal to the altruistic coeffi cient. When αij = 0, the first condition is trivially

satisfied while the second condition is never satisfied. Thus, agents only give to others they

care about: tij > 0⇒ αij > 0. Still, as we will see below, agents may end up being affected

by friends of friends and by others far away in the network.

To illustrate, consider common preferences satisfying Constant Absolute Risk Aversion,

or CARA: ui(y) = −e−Ay/A with A > 0. Lemma 1 becomes: (1) ∀i, j, yi ≤ yj − ln(αij)/A

and (2) ∀i, j such that tij > 0, yi = yj − ln(αij)/A. The difference between two friends’

incomes cannot be greater than a threshold value, which is independent on the income

levels. Alternatively, suppose that preferences satisfy Constant Relative Risk Aversion, or

CRRA: ui(y) = y1−γ/(1 − γ) for γ 6= 1 or ui(y) = ln(y) for γ = 1. Lemma 1 becomes:

(1) ∀i, j, yi/yj ≤ α
−1/γ
ij and (2) ∀i, j such that tij > 0, yi/yj = α

−1/γ
ij . Now, the ratio of

friends’incomes cannot be greater than a threshold value.

We note that the transfer game exhibits a complex pattern of strategic interactions and

externalities. The optimal tij is weakly decreasing in tkj but weakly increasing in tjk. An

agent tends to reduce his gift to a friend if this friend receives more gifts from others. In

contrast, he tends to increase his gift when his friend makes more gifts himself. Therefore,

gifts to an agent from different givers are strategic substitutes while gifts to and from

an agent are strategic complements. Next, suppose that j is a friend of i but k is not:

αij > 0 and αik = 0. Then, vi is decreasing in tjk but increasing in tkj. Externalities are
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positive with respect to some transfers and negative with respect to others. Thus, strategic

interactions and externalities depend on the network structure in complex ways.

In contrast, this game captures relatively simple rules of behavior. When preferences

are common and the network is binary, each agent provides financial support to his poorest

friends and, depending on his financial ability, brings them all up to a neighborhood-specific

minimal income. More generally, an agent i seeks to reduce the maximal level of altruistic

marginal utility αiju′j in his neighborhood. What happens when everyone is simultaneously

behaving in this way, however, is not obvious. Our objective is to analyze the interplay of

altruistic behavior on an arbitrary network.

To conclude this section, we establish existence. It follows from results due to Mercier

Ythier (1993, 2006). In Appendix, we derive an alternative proof based on the theory of

concave games (Rosen 1965).

Proposition 1. For any altruistic network and any utility functions, a Nash equilibrium

of the transfer game exists.

One diffi culty in showing existence is that the set of admissible strategies S is un-

bounded. To address this issue, we show that transfer networks in equilibrium are acyclic

(see Proposition 4 below) and that aggregate transfers in acyclic networks are bounded

from above. Once this bound is established, existence follows from classical fixed point

results.

III. An illustration

In this section, we illustrate the impact of the altruistic network on transfers and incomes.

We assume common preferences and contrast two benchmark structures: complete graphs

and stars.

Consider complete graphs first. Everyone cares equally about everyone else. Formally,

αij = α < 1, ∀i 6= j. This case is covered by Arrow (1981)’s analysis.7 Our discussion

7More precisely, Arrow (1981) considers utility functions of the form vi(y) = ui(yi) +
∑

j 6=i w(yj). The
two frameworks coincide when ∀i, ui = u and w = αu. Our results also apply to complete networks
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follows his, and we refer to his paper for detailed explanations. On the complete graph,

equilibrium conditions can be expressed through a unique endogenous variable: minimal

income ymin. To see why, denote by ŷmax the income level such that u′(ŷmax) = αu′(ymin).

Condition (1) of Lemma 1 implies that ∀i, u′(yi) ≥ αu′(ymin) and hence yi ≤ ŷmax. Con-

dition (2) means that if tij > 0, then u′(yi) = αu′(yj) ≤ αu′(ymin) = u′(ŷmax) and hence

yi = ŷmax and yj = ymin. There are two cases. If ∀i, j, u′(y0i ) ≥ αu′(y0j ), there is no transfer

in equilibrium. If, on the other hand, u′(y0i ) < αu′(y0j ) for some pair i, j, then an equilib-

rium is characterized by the following properties. If y0i > ŷmax, then yi = ŷmax, if y0i < ymin,

then yi = ymin and otherwise yi = y0i . Minimal income ymin solves the following equation

∑
i:y0i>ŷmax

(y0i − ŷmax) =
∑

i:y0i<ymin

(ymin − y0i ) (4)

This accounting equality says that aggregate gifts made are equal to aggregate gifts

received. Since the left hand side is decreasing in ymin while the right hand side is increasing

in ymin, this equation has a unique solution and equilibrium income yi is unique.

The equilibrium outcome can be described as a system of minimal income for the poor,

paid for by the rich. Agents act as if any income above ŷmax is contributed to a fund which

serves to bring the income of the poorest agents up to ymin. Who gives to whom precisely

does not matter and there are usually many equilibria in transfers. Let us highlight two

further properties of these equilibria. An agent never gives and receives at the same time.

And rankings in the initial income distribution cannot be reversed: y0i ≥ y0j ⇒ yi ≥ yj. We

see below that these two properties may not hold when agents interact through a network.

Consider star graphs next. Agent 1, the center, cares equally about all other agents

and peripheral agents only care about the center. Formally, α1i = αi1 = α < 1, ∀i 6= 1

and αij = 0 if i, j 6= 1. The equilibrium conditions on stars can also be expressed through

a unique parameter, namely the center’s equilibrium income y1. Denote by ŷR and ŷP

the income levels such that u′(ŷR) = αu′(y1) and u′(y1) = αu′(ŷP ). Consider a peripheral

agent i 6= 1 and rewrite the equilibrium conditions of Lemma 1. There are three cases. If

with heterogeneous preferences: vi(y) = ui(yi) + α
∑

j 6=i uj(yj), which are not covered by Arrow (1981)’s
analysis.
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ŷP ≤ y0i ≤ ŷR, then ti1 = t1i = 0 and yi = y0i . If y
0
i > ŷR, then ti1 > 0 and yi = ŷR. If

y0i < ŷP , then t1i > 0 and yi = ŷP . The center’s income y1 solves the following equation

y1 = y01 +
∑

i:y0i>ŷR

(y0i − ŷR)−
∑

i:y0i<ŷP

(ŷP − y0i ) (5)

Equation (5) represents a reformulation of accounting equality (1) for the center. It

says that the center’s final income must be equal to his initial income plus what he receives

minus what he gives. Observe that the left hand side is now increasing in y1 while the right

hand side is decreasing in y1. Therefore, this equation has a unique solution and there is

now a unique equilibrium in transfers.

This characterization allows us to illustrate two key properties of altruism in networks:

indirect giving and ranking reversal. Consider the numerical example presented in Figure

1 with common CARA preferences ui(y) = −e−Ay/A and − ln(α)/A = 1. The upper panel

depicts initial incomes. The center is richest with an income of 8. His left neighbor is the

second richest with an income of 7. If society were composed of these two agents only,

there would not be any transfer. However, the agent on the right is poor with an income

of 0. The lower panel depicts equilibrium incomes and transfers. The left agent gives 1 to

the center, who gives 4 to the right agent and equilibrium incomes are 6, 5 and 4. Here,

the center receives and gives at the same time. The gift of the agent on the left is indirect.

He does not give because his friend is initially in need but because his friend has a friend

in need. In a complex structure, these indirect gifts will depend in intricate ways on the

architecture of the network. In addition, the agent with the largest initial income does not

have the largest income after transfers. Income rankings can be reversed and the position

in the altruistic network is now an important determinant of equilibrium income. In the

remainder of the paper, we analyze altruism in arbitrary networks.
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Figure 1: An example of altruistic network

IV. Equilibrium incomes and transfers

A. Income uniqueness

In section, we characterize equilibrium incomes and transfers. We start by presenting our

first main result: the uniqueness of incomes after transfers. Our result extends Arrow

(1981)’s finding to arbitrary weighted networks.

Theorem 1. For any altruistic network and any utility functions, there is a unique profile

of equilibrium incomes.

Proof: Consider two equilibria T and T′ with income distributions y and y′. Assume that

y 6= y′. Without loss of generality, assume that y′i > yi for some i. Define U = {i : y′i > yi}.

Our proof unfolds in two steps.

We show, first, that if i ∈ U and tij > 0 or t′ji > 0 then j ∈ U . Suppose that y′i > yi

and tij > 0. By Lemma 1, u′i(yi) = αiju
′
j(yj) and u

′
i(y
′
i) ≥ αiju

′
j(y
′
j). Since u

′
i is strictly

decreasing, u′i(yi) > u′i(y
′
i) and hence αiju

′
j(yj) > αiju

′
j(y
′
j), which means that y

′
j > yj.

Suppose next that t′ji > 0. Then, u′j(y
′
j) = αjiu

′
i(y
′
i) and u

′
j(yj) ≥ αjiu

′
i(yi). Since αji > 0,

αjiu
′
i(yi) > αjiu

′
i(y
′
i) and hence u

′
j(yj) > u′j(y

′
j), and y

′
j > ŷj.

Next, given two sets U and V , define tU,V =
∑

i∈U,j∈V tij as aggregate transfers from

agents in U to agents in V . Let N denote the set of all agents. Observe that
∑

i∈U yi =∑
i∈U(y0i − ti,U − ti,N−U + tU,i + tN−U,i). Since

∑
i∈U(tU,i − ti,U) = 0, this yields

∑
i∈U

yi =
∑
i∈U

y0i − tU,N−U + tN−U,U

11



This accounting equation says that aggregate final income within is equal to aggregate

initial income within minus gifts given outside plus gifts received within.

Finally, observe that statements in our first step mean that tU,N−U = 0 while t′N−U,U = 0.

This implies that
∑

i∈U yi =
∑

i∈U y
0
i + tN−U,U ≥

∑
i∈U y

0
i while

∑
i∈U y

′
i =

∑
i∈U y

0
i −

t′U,N−U ≤
∑

i∈U y
0
i . Therefore,

∑
i∈U y

′
i ≤

∑
i∈U yi. But i ∈ U ⇔ y′i > yi which means that∑

i∈U y
′
i >

∑
i∈U yi, which establishes a contradiction. �

To show this result, we assume that two different income profiles exist. We combine

Lemma 1 with elementary flow techniques to generate a contradiction. Our proof is funda-

mentally distinct from Arrow (1981)’s constructive reasoning. Arrow builds the equilibria

from the bottom up and then checks the uniqueness of income profiles. Whether we can

find a general constructive proof remains an open question. We note that Arrow (1981)’s

arguments for the complete graph do not extend to arbitrary networks because equilibrium

conditions can generally not be expressed through a single parameter.8 We also note that

classical uniqueness properties, such as contraction or Rosen (1965)’s conditions, do not

apply here due to equilibrium multiplicity. We do provide a constructive argument for

CARA preferences, see Section IV.C below. In any case, Theorem 1 means that there is

no need to determine all Nash equilibria to study incomes after transfers. Finding one

equilibrium is enough.

B. Transfers

We next characterize equilibrium transfers. This section has three parts. First, we analyze

the structure of the equilibrium set. We show that uniqueness holds if the altruistic network

is a tree and that, in general, the equilibrium set is compact and convex. Second, we

look at the shape of the network of transfers. We show that this network is acyclic and

that transfers must flow through paths of highest altruistic strength. Third, we show that,

conditional on reaching equilibrium incomes, a Nash equilibrium must minimize a weighted

sum of transfers. The last two results illustrate a general principle of economy in transfers

at work in altruistic networks.

8In fact, stars and complete networks seem to be the only two structures for which this property holds.
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Equilibrium multiplicity on the complete graph is noted by Arrow (1981, p. 221):

“The actual flows, who gives to whom, are not unique (...), but this nonuniqueness is not

very interesting”. However, the star’s example shows that actual flows may be unique

on incomplete networks. In addition, multiplicity does not mean that anything goes and

understanding the structure of the equilibrium set is of some interest.

We show, first, that equilibrium uniqueness extends to trees. We say that an altruistic

network is a tree if the undirected graph where i and j are linked when αij > 0 or αji > 0

has no cycles.

Proposition 2. The transfer game has a unique Nash equilibrium if the altruistic network

is a tree.

Proof: Proceed by induction on the number of agents. Define Hn as the proposition’s

statement when the number of agents is lower than or equal to n. Direct computations

show thatH2 is true. Suppose thatHn−1 is true and consider a tree with n nodes. There are

two cases. Either the tree has an isolated node, and Hn is true. Or it has a node who has

a unique neighbor. In this case, let i have j as his only neighbor. Let T be an equilibrium

and T−i the submatrix obtained by removing the ith row and column. By Theorem 1,

there is a unique profile of equilibrium income y. By Lemma 1, there are three cases. If

yi = yj, then tij = tji = 0. If yi > yj, then tji = 0 and tij = y0i − yi ≥ 0. If yi < yj, then

tij = 0 and tji = yi − y0i ≥ 0. In all cases, tij and tji are uniquely determined. Then, note

that T−i is an equilibrium for initial incomes ŷ0 and network α−i where ŷ0j = y0j − tji + tij

and ŷ0k = y0k, ∀k 6= j. By Hn−1, T−i is uniquely determined and hence Hn is true. �

Proposition 2 means that multiplicity of equilibria is related to the presence of cycles

in the altruistic network. Our next result characterizes the mathematical structure of the

equilibrium set for arbitrary networks.

Proposition 3. For any altruistic network and any utility functions, the set of Nash

equilibria is compact and convex .

Proof: Consider a sequence of equilibria Tn converging towards T. By condition (1) of

Lemma 1, ∀i, j, u′i(yni ) ≥ αiju
′
j(y

n
j ). Taking the limit and by continuity of u′, u′i(yi) ≥
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αiju
′
j(yj). Next consider i, j such that tij > 0. There exists N such that n > N ⇒ tnij >

0. By condition (2), u′i(y
n
i ) = αiju

′
j(y

n
j ) and hence u′i(yi) = αiju

′
j(yj). Thus, T is an

equilibrium and the set of Nash equilibria is closed. By the proof of Proposition 1, it is

also bounded and hence compact.

Consider T and T′ two equilibria with income distributions y and y′, and λ ∈ [0, 1].

Let Tλ = λT + (1 − λ)T′, which defines a final income distribution yλ. Note that y =

y0−T1+TT1. Therefore, yλ = y0−(λT+(1− λ)T′)1+(λT+(1−λ)T′)T1 = λy+(1−λ)y′.

By Theorem 1, y = y′ and hence yλ = y. This means that condition (1) of Lemma 1 is

satisfied. As for condition (2), suppose that λtij + (1− λ)t′ij > 0. This implies that tij > 0

or t′ij > 0. In either case, it means that u′i(yi) = αiju
′
j(yj) and condition (2) is satisfied. �

An implication of Proposition 3 is that when uniqueness fails to hold, the number of

equilibria is infinite. Let us next look at the shape of the transfer networks. A Nash

equilibrium T can be viewed as a weighted directed network where i and j are linked if i

gives to j. Since αij = 0⇒ tij = 0, the transfer graph is a subgraph of the original altruistic

network. Consider a chain C of agents of length l: i1,i2,...,il. Define the altruistic strength

αC of chain C as the product of the bilateral altruistic coeffi cients: αC = αi1i2αi2i3 ...αil−1il .

This strength is positive if and only if the chain is a path of the altruistic network and any

agent in the chain cares about his successor.

Proposition 4. There are no cycles in transfers, and transfers flow through paths of

highest altruistic strength.

Proof: Suppose that i and j are connected through a path P in the transfer network: tii2 >

0, ti2i3 > 0, ..., til−1j > 0. We have: yi > yi2 , ...,yil−1 > yj and hence yi > yj and there is no

cycle. Condition (2) of Lemma 1 means that u′i(yi) = αii2u
′
i2

(yi2), u
′
i2

(yi2) = αi2i3u
′
i3

(yi3),

..., u′il−1(yil−1) = αil−1ju
′
j(yj). Successive substitutions yield u

′
i(yi) = αii2αi2i3 ...αil−1ju

′
j(yj)

and hence u′i(yi)/u
′
j(yj) = αP . Next, consider an arbitrary chain C connecting i and j:

i1 = i, i2, ..., il−1, il = j. Condition (1) of Lemma 1 means that u′i(yi) ≥ αii2u
′
i2

(yi2),

..., u′il−1(yil−1) ≥ αil−1ju
′
j(yj). Successive substitutions yield: u

′
i(yi) ≥ αii2αi2i3 ...αil−1ju

′
j(yj)

and hence αP ≥ αC . Therefore, P is a chain of highest altruistic strength. �
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In a binary network, all links have strength α and αC = αl when C is a path of length

l in the altruistic network. Proposition 4 yields:

Corollary 1. When all links have the same altruistic strength, transfers flow through

shortest paths of the altruistic network.

Money flows in this context share some characteristics of water flows across a rugged

landscape (Viessman & Lewis 2002). Water always follows paths of least resistance.

Similarly, gifts always follow paths of highest strength. Chains of transfers never take

roundabout ways to connect two agents. Informally, we could say that there is no waste

in transfers. Our last result provides further support to this intuition. Suppose that

equilibrium incomes y are known. Observe that any collection of transfers T such that

T1−Tt1 = y0−y allows agents to reach y from y0. Our next result clarifies the properties

satisfied by equilibrium transfers within this set.

Proposition 5. Take equilibrium incomes y as given. Then, equilibrium transfers T

minimize
∑

i,j − ln(αij)tij subject to: ∀i, j, tij ≥ 0, ∀i, j: αij = 0, tij = 0 and ∀i,
∑

j tij −∑
j tji = y0i − yi.

Proof: The objective function and the constrained set are convex, therefore first-order con-

ditions are necessary and suffi cient. The lagrangian of this problem is L =
∑

i,j − ln(αij)tij+∑
i λi(

∑
j tij −

∑
j tji − y0i + yi) where λi is the lagrange multiplier associated with i’s ac-

counting equality. Kuhn-Tucker first-order conditions are: ∀i, j, λi − λj ≥ ln(αij) and

tij > 0 ⇒ λi − λj = ln(αij). Next, take the logarithm in the conditions of Lemma 1.

A transfer profile T is a Nash equilibrium iff (1) ∀i, j, ln(u′i(yi)) − ln(u′j(yj)) ≥ ln(αij)

and (2) tij > 0 ⇒ ln(u′i(yi)) − ln(u′j(yj)) = ln(αij). Setting λi = ln(u′i(yi)) yields the

correspondence. �

Among all the transfer profiles leading to equilibrium incomes, equilibrium transfers

minimize a specific weighted sum of transfers. Links with stronger altruistic coeffi cients

have less weight in the sum. When all links have the same strength, equilibrium trans-

fers simply minimize the aggregate transfer needed to reach equilibrium incomes. A di-

rect implication of Proposition 5 is that if T and T′ are two distinct equilibria, then
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∑
i,j ln(αij)tij =

∑
i,j ln(αij)t

′
ij. The weighted sum of transfers is the same for all equilib-

ria.

Taken together, Propositions 4 and 5 illustrate a principle of economy in transfers at

work in altruistic networks. Even though each agent seeks to maximize his own utility

function independently, the interplay of these decentralized giving decisions eliminates

waste in transfers.

C. Constant Absolute Risk Aversion

In this section, we obtain further results for CARA preferences. We show that the transfer

game in this case possesses a best-response potential. This allows us to characterize the

Nash equilibria as the solutions of a quadratic maximization problem. We then derive some

implications of this reformulation.

Consider CARA preferences, ui(y) = −e−Aiy/Ai, ∀y for some Ai > 0. Lemma 1 be-

comes: (1) ∀i, j: Aiyi ≤ Ajyj − ln(αij) and (2) ∀i, j: tij > 0, Aiyi = Ajyj − ln(αij).

Following Monderer & Shapley (1996) and Voorneveld (2000), a function ϕ defined over

transfer profiles is a best-response potential of the transfer game if arg maxTi vi(Ti,T−i) =

arg maxTi ϕ(Ti,T−i), ∀i,T−i.

Proposition 6. Suppose that ui(y) = −e−Aiy/Ai, ∀i,∀y with Ai > 0. The function

ϕ(T) =
∑

i,j ln(αij)tij − 1
2

∑
iAiy

2
i is a concave best-response potential of the transfer

game.

Proof: Since y 7→
∑

iAiy
2
i is convex in y and y is linear in T, ϕ is concave in T. First,

compute ∂ϕ/∂tij. Note that ∂yi/∂tij = −1, ∂yj/∂tij = +1 and ∂yk/∂tij = 0, for k 6= i, j.

Therefore, ∂ϕ/∂tij = Aiyi−Ajyj+ln(αij). Next, we have: ∂vi/∂tij = −e−Aiyi +αije−Ajyj =

e−Aiyi [eAiyi−Ajyj+ln(αij) − 1]. This shows that ∂vi/∂tij > 0 ⇔ ∂ϕ/∂tij > 0 and ∂vi/∂tij =

0⇔ ∂ϕ/∂tij = 0. The problems of maximizing vi and ϕ over Ti have the same necessary

and suffi cient first-order conditions. �

Corollary 2. Suppose that ui(y) = −e−Aiy/Ai, ∀i, ∀y with Ai > 0. A matrix T is a Nash

equilibrium of the transfer game if and only if it maximizes ϕ(T) subject to: ∀i, j, tij ≥ 0

and ∀i, j: αij = 0, tij = 0.
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Under CARA, agents act as if they are all trying to maximize the same objective func-

tion. Consider a binary network and common preferences: ∀i, Ai = A. Denote by V ar(x)

the variance of profile x and observe that
∑

iAiy
2
i = An[V ar(y) + (ȳ0)2]. Equilibrium be-

havior can be viewed as trading off a reduction in variance against a decrease in aggregate

transfer. At one extreme, income variance is minimized by the equal income distribution:

yi = ȳ0, ∀i. However, reaching this distribution on an arbitrary network typically requires

a lot of indirect transfers. At the other extreme, aggregate transfer is minimized when

there is no transfer; incomes are unchanged and the initial income distribution may have a

high variance. Therefore, the equilibrium income distribution somehow lies inbetween the

initial and the equal income distributions.

The existence of a best-response potential has nice implications. In particular, we can

derive from Corollary 2 alternative proofs of Proposition 3 and Theorem 1. Convexity of

the equilibrium set directly follows from the classical property that the set of maximizers

of a concave function over a convex set is convex. Then, convexity of the equilibrium set

can be shown to imply income uniqueness. In Section V.B below, we derive some further

comparative statics implications

V. Comparative statics

A. Impact of initial incomes

In this section, we look at the effect of initial incomes. We show that equilibrium incomes

are monotonically related to initial incomes. We illustrate how a shock on initial incomes

gets transmitted throughout the network. We discuss the effect of redistributive policies

and show that an ex-ante Pigou-Dalton redistribution can lead to an increase in ex-post

inequality.

We first show that income after transfers varies monotonically with incomes before

transfers.

Proposition 7. For any utility functions and any altruistic network, yi is strictly increas-

ing in y0i and weakly increasing in y
0
j , ∀j 6= i.
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Proof: Consider two initial income distributions y0 and y0′ such that y0i > y0′i and y
0
j = y0′j

∀j 6= i. Let T and T′ be corresponding equilibria and y and y′ the corresponding income

distributions. Define U = {j : y′j > yj} and suppose that U 6= ∅. We adapt arguments

from the proof of Theorem 1. If j ∈ U and tjk > 0 or t′kj > 0 then k ∈ U . This

implies that
∑

j∈U yi =
∑

j∈U y
0
i + tN−U,U and

∑
j∈U y

′
i =

∑
j∈U y

0′
i − t′U,N−U . Therefore,∑

j∈U yj ≥
∑

j∈U y
0
j ≥

∑
j∈U y

0′
j ≥

∑
j∈U y

′
j, which establishes a contradiction. This implies

that U = ∅, and hence ∀j ∈ N , yj ≥ y′j. Next, define V = {j : y′j ≥ yj}. Suppose

that i ∈ V . By definition of y0 and y0′,
∑

j∈V y
0′
j <

∑
j∈V y

0
j . And through a similar

reasoning, we can show that
∑

j∈V yj ≥
∑

j∈V y
0
j ≥

∑
j∈V y

0′
j ≥

∑
j∈V y

′
j which establishes

a contradiction. Therefore, i /∈ V and y′i < yi. �

Suppose that an agent suffers an income shock. This shock is transmitted throughout

the altruistic network and affects overall transfers and equilibrium incomes. Proposition 7

states that the agent necessarily bears a part of the shock and that the other agents cannot

gain from it. Every other agent is either unaffected or affected negatively.

To gain some insight on how the shock is transmitted throughout the network, consider

the following example. Agents have common preferences, the network is binary and all

agents have initial income y0 except for agent i for whom y0i = y0−L. Equilibrium incomes

are characterized by the following properties. There are threshold levels lk, k = 1, 2, ... If

L < l1, there is no transfer and incomes are unchanged. If l1 < L < l2, i is supported by his

direct friends, who end up with income yj such that u′(yj) = αu′(yi), and agents at distance

2 or more do not give any money. If l2 < L < l3, i is supported by his direct friends who are

themselves supported by agents at distance 2 and agents at distance 3 or more do not give

any money. If j is a direct friend and k is at distance 2, then u′(yk) = αu′(yj) = α2u′(yi).

And so on. Equilibrium income is weakly decreasing in distance from i and all agents at the

same distance end up with the same income. Moreover, equilibrium incomes and threshold

levels depend on the number of agents at finite distances from i, but do not depend on the

link patterns over and above this number distribution. More generally, y is a continuous

and piecewise differentiable function of y0 with a potentially large number of pieces. And

an income shock affects socially closer agents first.
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The presence of an altruistic network affects the impact and design of redistributive

policies. We illustrate the richness of the effects at work in what follows and leave a full-

fledged study of this issue for future research. Consider the example depicted in Figure 2.

Three agents are placed on a binary line and have CARA preferences, ui(y) = −e−Ay/A

with α and A such that − ln(α)/A = 2. On the upper left panel, initial incomes are 4, 10

and 0. In equilibrium, on the lower left panel, the center gives 4 to the right and incomes

are 4, 6 and 4 with V ar(y) ≈ 0.89. Next, redistribute ex-ante 2 from the relatively rich

center to the relatively poor left. Initial incomes, on the upper right panel, are now 6, 8

and 0. In the new equilibrium, in the lower right panel, the center gives 3 to the right and

incomes are 6, 5 and 3 with V ar(y) ≈ 1.56. The lowest income has decreased and variance

has increased. The center here is the main source of support of the agent on the right. Any

public policy that takes money away from the center without giving money to the agent

on the right may lead to a deterioration of the situation of the poorest agent. Therefore,

redistributing money from richer to poorer individuals can actually lead to an increase in

inequality once altruistic transfers have been accounted for.

87 0

56 4

1 4

4 0

64 4

4

86 0

56 3

3

10

Figure 2: An ex-ante Pigou-Dalton redistribution can increase ex-post inequality

B. Impact of the altruistic network

In this section, we study the impact of the altruistic network. We first show that any

network reduces income inequality in the sense of second-order stochastic dominance. We

then consider an increase in altruism. We find that an expansion of the altruistic network

can increase income variance. Still, the maximal income spread tends to decrease and,
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under CARA, a linear combination of variance and transfers must decrease. Finally, we

look at the relation between income homophily and income inequality.

Let us establish, first, that altruistic networks indeed reduce inequality.

Proposition 8. On any altruistic network and for any utility functions, the distribution

of equilibrium incomes second-order stochastically dominates the distribution of initial

incomes.

Proof: We show that the distribution of equilibrium incomes can be obtained from the

initial distribution through a series of Pigou-Dalton transfers from richer to poorer agents.

Consider an equilibrium T. Order transfers tij as follows. By Proposition 4, the transfer

network is acyclic. Thus, there is an agent i who does not receive. From the initial

distribution, apply i’s transfers first, in any order. Then remove i and repeat. Pick a

second agent who does not receive from others in the remaining network. Apply this

second agent’s transfers, in any order. Repeat til no more agent is left. This procedure

leads to an ordering of all pairwise transfers. Therefore, final incomes are indeed equal to

equilibrium incomes. This ordering also guarantees that a transfer always takes place from

a richer to a poorer agent. �

Proposition 8 shows that any network reduces inequality compared to the empty net-

work. More generally, how does the shape of the altruistic network affects society’s move

towards equality?

We ask, first, whether Proposition 8 extends. Starting from an altruistic network, does

an increase in altruism necessarily reduce inequality? The answer turns out to be negative.

Consider the numerical example presented in Figure 3 with CRRA preferences, ∀i, ui(y) =

ln(y), and a binary network with α = 0.5. The Nash conditions of Lemma 1 become:

αij > 0⇒ yi ≤ 2yj and tij > 0⇒ yi = 2yj. There are four agents with initial incomes 27,

6, 2 and 16. Number agents from left to right. In the initial network, on the left panels, 2

is connected with 1 and 3, and 4 is isolated. Equilibrium incomes, in the lower left panel,

are 20, 10, 5 and 16 with t12 = 7 and t23 = 3 and V ar(y) ≈ 32.7. Next, add a connection

between 3 and 4 as depicted on the right panels. Equilibrium incomes on the lower right
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panel become 22, 11, 6 and 12 with t12 = 5, t23 = 0 and t43 = 4 and V ar(y) ≈ 33.7. The

new link connects the poorest agent, 3, with a relatively wealthy agent 4. Thanks to his

new connection, 3 does not need support from 2 any more and this cuts down indirect gifts

from 1. The largest income y1 increases and overall variance increases. Thus, adding links

to an altruistic network may lead to an increase in income variance.

627 2

1020 5

7 3

16 627 2

1122 6

5 4

16

16 12

Figure 3: Adding an altruistic link can increase inequality

Next, assume common preferences ∀i, ui = u and focus on the relation between the

lowest and highest incomes ymin and ymax. Note that u′(ymax)/u′(ymin) is lower than 1 and

tends to be lower when the income spread ymax−ymin is higher. For any pair i, j, define α̂ij
as the highest altruistic strength among chains connecting i and j. And let α̂min = mini,j α̂ij

be the lowest of these pairwise coeffi cients. Thus, α̂min captures the altruistic strength of

the weakest indirect link in the network.

Proposition 9. On any altruistic network and for any common utility function such that

u′(∞) < α̂minu
′(0),

min
y0

u′(ymax)

u′(ymin)
= α̂min

Proof: Consider an equilibrium and i and j such that yi = ymax and yj = ymin. From the

proof of Proposition 4, we know that u′(ymax)/u′(ymin) ≥ α̂ij ≥ α̂min. Next, let i and j be

such that α̂ij = α̂min. Consider the following distribution: y0i = Y ; y0k = 0, ∀k 6= i. Note

that yi = ymax and hence yi ≥ ȳ0 = Y/n. As Y tends to +∞, yi tends to +∞. Since

u′(yi) ≥ α̂iju
′(yj), u′(∞) ≥ α̂iju

′(yj). By assumption, α̂iju′(0) > u′(∞) and hence yj > 0.

Thus, if Y is high enough, j is a net receiver. Since i is the only individual with positive

initial income, money must flow somehow from i to j and hence u′(yi)/u′(yj) = α̂ij. �
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This result says that the relation between the largest and the lowest equilibrium in-

come is controlled by the strength of the weakest indirect link in the altruistic network.

When all links have strength α, α̂min = αd where d is the network’s diameter, that is, the

largest distance between any two agents. Under CARA preferences, u(y) = −e−Ay/A, and

Proposition 9 reduces to: maxy0(ymax − ymin) = d ln(α)/A. The highest income difference

sustainable in equilibrium is simply proportional to the network’s diameter. Under CRRA

preferences, u(y) = y1−γ/(1 − γ) for γ 6= 1 and u(y) = ln(y) for γ = 1, and Proposition

9 becomes maxy0 ln(ymax)− ln(ymin) = d ln(α)/γ. The highest difference in log incomes is

now proportional to the diameter.

An implication of Proposition 9 is that miny0 u
′(ymax)/u

′(ymin) is weakly increasing in

α. When the altruistic network expands, the weakest link can only become stronger which

can only reduce inequality as captured by u′(ymax)/u′(ymin).

Next, we consider CARA preferences and build on the potential characterization to

derive a comparative statics result.

Proposition 10. Suppose that ui(y) = −e−Aiy/Ai, ∀i, ∀y with Ai > 0. Consider an

equilibrium T with income y for the network α and an equilibrium T′ with income y′ for

the network α′ ≥ α. Then

∑
i,j

ln(αij)tij −
1

2

∑
i

Aiy
2
i ≤

∑
i,j

ln(α′ij)t
′
ij −

1

2

∑
i

Aiy
′2
i

Proof: As α increases, the objective function increases weakly and the constrained set

expands. Therefore, the value of the objective function at the maximum increases weakly.

�

For common preferences and binary networks, a linear combination of variance and

aggregate transfer must decrease when altruism expands. This means, in particular, that

increases in income variance are necessarily associated with relatively strong decreases in

aggregate transfer.

To conclude this section, we provide a first look at the relation between homophily and

inequality. We consider the following example. There are 20 agents divided in two groups:
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poor and rich. Ten agents are poor with y0i = 0 and the other ten are rich with y0i = 10.

All links have strength α and agents have CARA preference with − ln(α)/A = 2. The

network is built as follows. Start from the network where agents are fully connected within

and there is no link between. Then, remove l links at random within each income group

and add 2l links at random between the poor and the rich. The overall number of links

stays constant. As l increases, the relative proportion of links between increases and hence

homophily with respect to income decreases. We pick 1000 network realizations for each

value of l and for each network we compute equilibrium incomes.9 We depict in Figure

4 the variance of equilibrium incomes as a function of l. The three curves depict the 5th

percentile, the median, and the 95th percentile of the distribution of variances.
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Figure 4: Homophily and Inequality

9We compute equilibrium incomes as follows: (0) Start from the profile of zero transfers. (1) Order
agents in any way. (2) Have each agent in turn plays a best-reply. Repeat (1) and (2) til convergence,
which is guaranteed by the existence of a concave best-response potential.
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In this example, altruistic networks with more income homophily clearly generate more

inequality. More precisely, inequality reduction is lower on networks with higher homophily.

In addition, we observe the emergence of small-world effects. The first altruistic links

between the poor and the rich lead to a strong reduction in variance. Then, additional

links have a much smaller and decreasing impact. This small-world effect is a consequence

of indirect gifts. Even a single link between communities ends up affecting every agent, as

poor agents receiving financial support from rich friends help out other poor agents lacking

in such connections.

VI. Conclusion

To conclude, we provide the first theoretical analysis of altruism in networks. Agents are

connected through an arbitrary weighted network and care for their direct friends. We

analyze the resulting transfer game. We show that equilibrium incomes are unique on

any network and that equilibrium transfers are unique on trees. We show that the set of

Nash equilibria is compact and convex. We uncover a principle of economy in transfers at

work in altruistic networks. Equilibrium transfers flow through paths of highest altruistic

strength and minimize a weighted sum of transfers needed to reach equilibrium incomes.

A negative shock on one agent cannot lead to an increase in the income of another agent,

and affects socially closer agents first. An equalizing redistribution of initial incomes can

end up increasing inequality. Altruistic networks decrease inequality, but more altruistic

or more homophilous networks can increase inequality.

A number of potentially important issues could be explored in future research.

First, the risk sharing properties of altruistic networks. Consider some joint distribu-

tion of stochastic incomes and suppose that transfers ex-post operate as described in our

analysis. How would expected utilities depend on the network structure? Would friends’

friends help by providing a source of support for direct friends, or would they reduce payoffs

by acting as competitors for direct friends’gifts?

Second, the effect of altruistic networks on incentives. Under moral hazard, Alger &

Weibull (2010) show that mutual altruism in pairs has two opposite effects: a negative,
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free-riding effect and a positive empathy effect.10 The empathy effect may dominate when

altruism is strong. How would their analysis extend to arbitrary social structures? What

kind of networks would be better able to informally address moral hazard?

Third, the design of public policies in altruistic societies. How to optimize the targets

of cash transfers programs in altruistic networks? How to avoid the kind of inequality-

enhancing redistribution highlighted in Section V? How would crowding out of private

gifts by public transfers depend on the network? How to introduce formal insurance in

altruistic communities?

Fourth, the empirical identification of real motives behind private transfers. As men-

tioned in the Introduction, altruism generates specific predictions with respect to the size

of shocks. In addition, many of our results have identifying power. With detailed data

on transfers and incomes, they could potentially be tested or used to structurally estimate

altruistic coeffi cients. This is true, in particular, of our characterization of the shape of

transfer networks and of our comparative statics result with respect to initial incomes and

to the network.

Fifth, the interaction between altruism and other motives on networks. In reality, al-

truism, exchange and social pressure likely all play a role in explaining private transfers.

Few studies have explored the interaction between altruism and other motives. Foster

& Rosenzweig (2001) looks at the impact of altruism on mutual insurance arrangements

under limited commitment. Alger & Weibull (2008) study the combined effect of altruism

and social pressure on incentives. These two studies consider individuals interacting in

pairs. It would be interesting to look at the interaction between altruism, exchange and

social pressure on social networks.

10An agent who knows that he will be helped may shirk and reduce hisloss-avoiding effort. This is the
free-riding effect. An agent who knows that he may have to provide for those he care about may increase
his effort to be in a better position to help. This is the empathy effect.
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APPENDIX
Proof of Proposition 1.

Define SM = {T ∈ S :
∑

i,j tij ≤ M} for any M > 0. Then, SM is compact and convex.

Agent i’s utility vi is concave in Ti and continuous in T. By Theorem 1 in Rosen (1965),

an equilibrium exists on SM . In this equilibrium, the added constraint does not change

the property that tij > 0 ⇒ yi > yj. This property implies that the transfer network is

acyclic. Indeed, suppose that tii2 > 0, ti2i3 > 0,..., til−1j > 0. Then: yi > yi2 ,...,yil−1 > yj

and hence yi > yj and there is no cycle.

Next, let us show by induction that aggregate transfers in acyclic networks are bounded

from above. The induction hypothesis, Hn, is as follows: In an acyclic transfer network

with n agents,
∑

i,j tij ≤ (n − 1)
∑

i y
0
i . Suppose first that n = 2. Then t12t21 = 0. If

t12 > 0, then t12 ≤ y01. If t21 > 0, then t21 ≤ y02. In any case, H2 holds. Suppose, next,

that Hn−1 is true. Consider an acyclic transfer network with n agents. Without loss of

generality, suppose that agent 1 does not receive. This means that
∑

j t1j ≤ y01. Remove

1 and apply Hn−1 to the resulting network:
∑n

i,j=2 tij ≤ (n− 2)
∑n

i=2(y
0
i + t1i). Therefore,∑

i,j tij =
∑

j t1j +
∑n

i,j=2 tij ≤ (n− 1)y01 + (n− 2)
∑n

i=2 y
0
i ≤ (n− 1)

∑
i y
0
i and Hn holds.

Finally, choose M > (n− 1)
∑

i y
0
i . An equilibrium on SM is an equilibrium on S. �
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