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Abstract

Some recent evidence on government finance statistics of European countries sug-
gests that countries with public debt issues also show a low tax revenue-GDP ratio.
In this paper we develop a small open economy model of endogenous growth in which
the engine of growth is public spending. We assume that government can finance pub-
lic expenditures by borrowing on imperfect international financial markets where her
borrowing capacity is limited. In contrast to the existing literature, where debt is con-
trained by the stock of capital, the collaterals are based on GDP. The balanced growth
path and the transitional dynamics are studied. First, we show that the economy may
converge in a finite time to the regime with binding collateral constraint. Second, in
such regime the steady state public expenditures-GDP ratio is greater than that of
the models without collateral constraints and of the stock-based collaterals literature.
Third, the model predictions are consistent with recent empirical literature: there exists
a certain treshold of financial and institutional development and economic features that
an economy needs to attain in order to benefit from financial liberalization. Finally, if
the degree of financial markets imperfections is weak, technologically developed coun-
tries experience a higher long-run growth rate than that of the stock-based collaterals
literature, otherwise the world interest rate need to be high enough.
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1 Introduction

The causes of the 2009-2010 European sovereign debt crisis are not just a matter of level of
public debt, but a combination of different factors: the globalization of finance, easy credit
conditions, the 2007-2012 global financial crisis, international trade imbalances, real-estate
bubbles, the 2008-2012 global recession, fiscal policy choices related to government revenues
and expenditures. The countries mainly involved by the crisis are Greece, Portugal, Ireland
and Spain.1 All of them have both debt and deficit issues. The worst situation is Greece.
Among the causes of the crisis highlighted by the Greek Ministry of Finance in January
2010 there are low GDP growth rates, mainly due to the lack of competitiveness and to
public spending directed to non-growth sectors; high government deficits, from 2004 to 2009
the nominal output has increased of 40%, primary expenditures have increased by 87% as
compared to an increase of only 31% of tax revenues, which is below the expected level.
Other outstanding problems are government debt level and the political budget compliance.

The countries’ current account during the crisis, together with the fact that monetary
(and currency) policies are not available to the individual states, contribute to explain the
debt crisis in the Euro area. As the unique policy instrument left in each country’s hands is
the fiscal policy, we assume in the paper that this is the unique way to control the evolution
of the level of public debt. We develop a small open economy model of endogenous growth
in which government can finance productive public expenditures by levying income taxes
and by borrowing on imperfect international financial markets. Foreign debt is constrained,
as international lenders can seize only a fraction of collaterals in case of debt repudiation
and the engine of growth is public spending.

The literature on endogenous growth, collateral constraint and financial markets is very
limited and assumes that a country’s debt is constrained by physical capital. Eaton and
Gersovitz (1981) assume that borrowers who repudiate their debt face future exclusion from
capital markets and lenders will establish a credit ceiling above which they will be unwilling
to increase loans. If the ceiling is below the amount desired by the borrower then the borrower
is rationed. Cohen and Sachs (1986) were the first to introduce a collateral constraint into
an open economy growth model. The production function is assumed to be linear in physical
capital and they find that the economy experiences a two-stage growth pattern. In the first
stage of unconstrained borrowing debt grows more rapidly than the economy and the debt-
GDP ratio rises. In the second stage borrowing is constrained and debt and GDP grow at the
same rate and more slowly than in the first stage. Boucekkine and Pintus (2012) introduce

1Italy also has a high debt but Italy’s budget position is better than the “crisis” economies. Moreover,
despite Italian debt over GDP ratio increased, public debt is characterized by a long maturity and it is
mostly held domestically.
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imperfect contract enforcement in an open economy AK-model: debt contract has to depend
upon past values of capital stock. The model can explain leapfrogging and growth reversals.
They find that a history effect, due to the fact that the richer a country has been in the past
the more it can borrow in international financial markets, may offset the growth-enhacing
effect of foreign debt. Leapfrogging occurs for small delays when the growth effect dominates
the history effect. Finally, the absence of leapfrogging implies growth reversals: the delay is
so large that the history effect now dominates the growth effect.
However, the use of physical capital as a collateral has some important limits. First, it is
difficult for creditors to seize the pledged capital because its value must be estimated and
can decrease over time. Second, publicly or privatley owned capital usually take the form
of physical assets (such as portions of territitory, monuments, infrastructures, etc.) which
are of difficult appropriability for foreign creditors; this makes the use of public capital
as a collateral unrealistic. Actually, the unique resource that a government can use as a
viable collateral is its ability to raise revenues via taxation. Hence, the country’s borrowing
capacity should be related to the amount of obtainable fiscal revenues.
The analysis of recent government finance statistics of European countries underlines that
countries with high debt problems also show the lowest tax revenues.
Tax revenue constitutes about 91% of total government revenue of total government revenue
in the European Union. From 2007 to 2010 it has declined and now it has reached the
lowest value of the period 1995-2010. In 2010 tax revenue in terms of GDP was the highest
in Denmark, Belgium and Sweden (Figure 1.1) while, among the countries which joined the
European Union before 2004, it was the lowest for Ireland (29.8%), Spain (32.9%), Greece
(33.2%) and Portugal (34.8%). The drop of the tax revenue in terms of GDP reflects the
economic and financial crisis.
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Figure 1.1: Ranking of total tax revenue as a % of GDP by Member States and EFTA
countries, 2010 (Source: Eurostat)

Figure 1.2: Evolution of Tax Revenue (Source: Eurostat)
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Figure 1.2 shows the evolution of tax revenue-GDP ratio of the above mentioned countries
(Greece, Portugal, Spain and Ireland). For sake of comparison we plotted also the average
of the European Union, France, a country whose the tax revenue-GDP ratio is above the
European average and whose budget position is not worrying, and Italy. Portugal, Spain
and Greece have shown a similar and a low tax revenue which was substantially stable in
the period before crisis. Then it dropped. Ireland registered a higher tax revenue at the
beginning of the period but since then the ratio fell, staying at the lowest value among the
sample of considered countries. Italy started below the European average, but subsequentely
it hovered above the average so that this is the unique country whose tax revenue in terms
of GDP has increased during the crisis period. France has stayed always above the average,
showing a stable enough tax revenue. Figure 1.3 shows the evolution of public deficit for
the period 1995-2011. In 2012 the largest deficit was registered by Irland, Portugal, Spain,
Greece and in 2011 by Irland, Greece and Spain. By 2007 deficit has become a serious
problem for the considered countries.
For the debt/GDP, the highest increases between 2007 and 2011 has been registered for
Irland, Greece, Portugal and Spain. Figure 1.4 shows its evolution for the period 1995-2011.
The dramatically increasing trend starts in 2007, as a result of economic and financial crisis.2

2Figure 1.4 shows the reason why debt positon of Italy is not dramatic: the evolution of debt is substan-
tially stable.

5



Figure 1.3: Evolution of Public Deficit (Source: Eurostat)

Figure 1.4: Evolution of Public Debt (Source: Eurostat)
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Sovereign debt is particularly relevant for the issue of debt sustenability. In response to
the economic and financial crisis governments increased the gross external debt. Figure 1.5
shows general government external debt for the period 2002-2011:

Figure 1.5: General government external debt (% of total). Source: Eurostat

Data on Greek sovereign debt are not available. Greece is in a very particular situation,
given its economic and productive weakness and given that its total public debt is already
very high. Its public external debt/GDP percentage was of 78.2% in 2007, 80.3% in 2008
and 91.4% in 2009 (Dias 2011).

The analysis of budget position of European countries highlights that countries with the
lowest tax revenue experience the most serious problems of public debt: countries which
have registered the most dramatic upward trend of debt in terms of GDP have had at the
same time the lowest and decreasing tax revenue-GDP ratio.

These facts confirm that a government should use tax revenue to control the level of
public debt: the higher the latter the greater is the borrowing capacity of a country.

We assume that public expenditures are the engine of growth. This can be justified
by recalling that, as previously discussed, the unique control instrument available to Euro-
pean countries is fiscal policy, and by noticing that recently many critics of the Stability
and Growth Pact have stressed the relevance of productive public goods for growth, hence
suggesting that they should be removed from deficit computation.

The first model with productive public expenditures is Barro’s (1990) seminal paper.
Here public expenditures, which are financed by levying income taxes (budget balance as-
sumption), increase the production of the economy, so that they are the engine of growth.
The small open economy version is developed by Turnovsky (2009) in a model where a coun-
try can borrow without any limit from the rest of the world. We extend these two models
to the case where the governement can finance public expenditures by taxation and by bor-
rowing to the international financial markets and we assume that public debt is bounded by
tax revenue: the higher the latter the higher is the borrowing capacity of the country. Inter-
national financial markets are imperfect in the sense that creditors can just seize a fraction
of the collaterals in the case of default.
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The paper constitutes a novelty also from a technical point of view. In order to verify
if this stock will meet the constraint and to determine endogenously the date at which it
happens, we solve the model by using the multi-stage optimal control technique in which
the standard optimal control problem is constructed as a dynamic programming problem,
allowing to find the instant at which the economy changes the regime. Typical optimal
switching problems that can be found in the literature involves regimes which are character-
ized by different technological or ecological states. Each regime is defined as a certain set of
parameters values (see Tomiyama 1985 and Boucekkine et al. 2004). A more recent branch
of the literature uses this technique to analyze the problem of irreversibility: when the state
variable reaches a certain treshold, the economy switches to a different regime in which the
parameters of the economy are different (see Boucekkine et al. 2013a, Boucekkine et al.
2013b, Prieur et al. 2011). In this paper we encompass another type of optimal switching
time problem. The fact that at the initial date the constraint is not binding and then, if
switching is optimal, it becomes binding modifies one of the state equation, thus definying
two possible states of the economy.

The paper contains a number of new results and broad policy implications. First of all,
the results of the regime where the constraint is not binding (non binding regime) are the
same as the Barro-Turnovsky’ model: the optimal public expenditures-GDP ratio is equal
to the income share of public expenditures and the growth rate of consumption is equal
to the difference between the exogenous world interest rate and the discount rate. Then,
under certain conditions, namely if the growth rate of consumpion in the unconstrained
regime is small enough, the economy will switch to the regime in which the constraint
is binding. We show that the economy admits a balanced growth path (BGP) which is
not immediately reached because of the presence of investment adjustment costs and we
determine analitically the conditions for the BGP’s stability. This state of the economy
shows some important differences with respect to the Barro-Turnovsky and the stock-based
literature’s model: the public expenditures-GDP ratio is greater than the income share of
public expenditures. This means that the country will use public debt also to finance the
public expenditures-GDP ratio. This happens because a higher investment in public goods
relaxes the borrowing constraint. We also show that if financial markets imperfections are
not too weak, countries with a high TFP experience higher growth rates under the flow-
based collateral assumption than under stock-based collaterals. Otherwise the international
interest rate must be sufficiently high. When instead the TFP is low the flow-based growth
rate is always smaller that the stock-based growth rate.
We finally find the endogenous switching date. This is a novelty in the literature: the above
cited papers can determine the endogenous switching date since all the economy’s regimes
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admit closed form solutions, hence the date can be determined by replacing them in the
matching conditions between the regimes. Our binding dynamic system is non linear, hence
it cannot be solved in closed form. Furthermore, we are able to give analytical conditions for
corner solutions and to our knowledge we are the first ones who simulated the inter-regime
transition. First, we find that if there are no adjustment costs of capital, the economy
immediately jumps to the regime where the constraint is binding. In other words, the
presence of investment adjustment costs makes the inter-regime transition slowlier. Second,
if the growth rate of consumption of the non binding regime is high, the economy will never
converge to the binding regime, hence the date will be infinity. This translates into some
treshold conditions on the relevant parameters of the model that the economy needs to meet
in order to benefit from financial openess. In particular, if the economy is not financially
and economically developed enough, i.e., if the international interest rate is too high, the
installation costs parameter is too large and the productivity parameter is too low, the
country will stay forever in autarky. Hence the model predictions are consistent with the
recent empirical literature on financial integration. This literature shows that the benefits
that a country can obtain from financial globalization depend on the country’s situation.
Kose et al. (2009) show that there exists a certain treshold of financial and institutional
development and economic characteristics that an economy needs to attain in order to benefit
from financial liberalization. Similary, Aizenman et al. (2011) show that economy’s growth
is lower in countries with high levels of past debt and weak institutions. We also performed
a comparative statics analysis of the effect of the relevant economy’s parameters on the
switching date. This date turns out to be an increasing function of the degree of financial
openess, the international interest rate, the adjustment costs; the switching date is also a
decreasing function of the productivity parameter.3

The paper is structured as follow. In Section 2 we review Barro’s (1990) and Turnovsky’s
(2009) models. In Section 3 we present and solve our model and we give the conditions
for the switch from the non-binding to the binding regime. Section 4 compares our model
with the literature. Section 5 analyzes the balanced growth path and Section 6 discusses the
determination of the optimal switching date. Finally, Section 7 concludes. Technical details
are contained in the Appendix.

3Aizenman et al. (2007) build a similar model to ours: countries are characterized by limited tax and
debt capacity. However they do not tackle the problem of collaterals and imperfect financial markets.
Furthermore, the results and the technical analysis are different. First, the economy is closed. Second,
contrary to what we obtained in our paper, borrowing to finance public good is not efficient. Third, they do
not take into account any problem of endogenous switching.
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2 The literature

As we anticipated in the introduction, in this paper we extend Barro’s (1990) model by
assuming that government can finance public expenditures not only by taxation but also
by borrowing on international financial markets. Turnovsky (2009, Ch. 2) has already
extended some simple models of endogenous growth to the small open economy case, where
the country can borrow or lend in the international financial markets. In Section 2.2 he
developed Romer’s (1986) model of learning by doing in a decentralized economy, while in
Section 2.4 he modified Barro’s (1990) model to the case of public good congestion. In this
review, for the sake of comparison, we adapt the model of Section 2.2 by assuming that
the engine of endogenous growth is productive public expenditures, as in Barro’s paper,
and we solve for the optimal policy case. The results in terms of model’s properties do not
change. In our subsequent analysis we start from this model and we assume, in addition,
that international financial markets are imperfect: the representative country faces credit
constraints. Moreover, public debt is bounded by fiscal revenue.

Hence it turns out to be useful to discuss Barro’s (1990) and Turnovsky’s (2009) models.
This is the aim of the next two sections.

2.1 Barro’s model

We consider a centralized economy. Government’s purchases of goods and services, G, enter
the production function as pure public goods. The production function is Cobb-Douglas:

Y = AG
α
K

1−α
, A > 0, 0 < α < 1 (2.1)

where K is the firm’s stock of physical capital, A is the technology parameter and G is
the flow of productive government expenditures. α represents the income share of public
services. For a given G the economy faces diminishing returns to scale in the stock of capital
and constant returns to scale in G and K. We normalize population to one troughout the
paper: labor is supplied inelastically and population growth rate is exogenous. Capital can
be interpreted in a broad sense by including human capital.

Government finances public expenditures by levying income taxes. Its budget constraint
is

G = τY, 0 < τ < 1 (2.2)

By assuming that the agent’s intertemporal utility is given by U (C) =
´ +∞
0 lnCe

−ρt
dt,

where 0 < ρ < 1 is the discount factor, the benevolent planner maximizes the stream of
consumption with respect to consumption and public expenditures subject to the economy
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aggregate resource constraint K̇ = AG
α
K

1−α − C − G. We assume that capital does not
depreciate for the sake of simplicity. We will mantain this assumption throughout the
paper, but the results do not change if the depreciacion rate is taken positive. The necessary
condition with respect to public goods gives the efficiency condition

∂Y

∂G
= 1

which states that at the optimum the marginal benefit of increasing G of one unit must be
equal to the unitary social marginal cost. This gives the optimal public expenditures-GPD
ratio: �

G

Y

�Barro

= α

The growth rate of the centralized economy turns out to be equal to

g
Barro =

�
(1− α)A

1
1−αα

α
1−α − ρ

�

2.2 Turnovsky’s model

The production function is the same as in Barro’s model. Here the economy is small and
open, hence the interest rate is exogenous. We shall call it r̂. The economy has unconstrained
access to international financial markets. In order to be consistent with our model we assume
that the country is a net borrower on world capital markets.4 We denote by B the country’s
debt, so that the economy’s aggregate resource constraint (i. e. the economy’s current
account) is given by

Ḃ = C + I +G+ r̂B +
h

2

I
2

K
− Y (2.3)

where K is capital and I is investment. Capital accumulation involves convex investment
adjustment costs of the form Φ (I,K) = I

�
1 + h

2
I

K

�
, h > 0. This is the traditional Hayashi’s

(1982) formulation, where the adjustment costs is proportional to the rate of investment in
terms of units of installed capital. The presence of investment adjustment costs is a necessary
assumption of small open economy models for two reasons. First, in a world where the
country has unlimited access to international financial market, hence it is not constrained
by internal savings, the investment rate would be infinity in the absence of adjustment costs
(see Turnovsky 2002). Second, without adjustment costs, this model would show the strong
knife-edge condition that the internal marginal productivity of capital would be constrained
to be equal to the exogenous interest rate (see Appendix A). Finally we assume that capital

4Turnovsky (2009) assumes that the country may accumulate foreign bonds. This difference does not
affect the properties of the model.
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does not depreciate so that
K̇ = I (2.4)

The planner has to choose consumption, public expenditures, investment, debt, capital
to maximize intertemporal utility subject to (2.3) and (2.4). The optimality conditions with
respect to C, I and G are

1

C
e
−ρt + λ1 = 0 (2.5)

1 + h
I

K
= q (2.6)

G

Y
= α (2.7)

Equation (2.7) is the same as Barro’s (1990) model. q ≡ −λ2
λ1

is the market value of capital
in terms of the price of bonds.5 Hence condition (2.6) allows us to write the growth rate of
capital as

K̇

K
=

q − 1

h

Hence capital will increase/decrease according whether q ≷ 1. Optimization with respect to
B and K gives

λ1r̂ = −λ̇1 (2.8)

which equates the marginal value of consumption to the exogenous costs of debt, and

q̇

q
+

(q − 1)2

2hq
+ (1− α)A

1
1−αα

α
1−α

1

q
= r̂ (2.9)

which equates the return of domestic capital to the exogenous cost of bonds.
Finally the transversality conditions must hold

lim
t→+∞

λ1B = 0, lim
t→+∞

λ2K = 0.

Equations (2.5) and (2.8) determine the growth rate of consumption

Ċ

C
= r̂ − ρ = Ψ (2.10)

which is given by the difference between the international interest rate and the discount rate.
For the endogenous model to make sense, r̂ > ρ must be assumed. By solving this equation
we obtain the level of consumption: C (t) = C (0) eΨt, where the initial level of consumption

5λ1 and λ2 are the two co-state variables of the optimization problem.
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C(0) must be determined.
The growth rate of capital is determined by q, whose dynamics is given by (2.9). By

setting q̇ = 0 we obtain two solutions

q1 = (1 + r̂h)−
�

(1 + r̂h)2 −
�
1 + 2h (1− α)A

1
1−αα

α
1−α

�

q2 = (1 + r̂h) +

�
(1 + r̂h)2 −

�
1 + 2h (1− α)A

1
1−αα

α
1−α

�

A necessary and sufficient condition for the capital to converge to its path of steady growth re-
quires that these solutions must be real, which happens when r̂

�
1 + r̂h

2

�
≥ (1− α)A

1
1−αα

α
1−α .

The interpretation is related to the presence of adjustment costs: the smaller is h, the smaller
the marginal value of capital (1− α)A

1
1−αα

α
1−α must be in order to guarantee the existence

of a balanced growth path. A smaller h implies a greater rate of return to capital due to the
difference between the valuation of new capital and the value of the resources it utilizes, per
unit of installed capital, which is given by the term (q−1)2

2hq = (qI−Φ)
qK

in the arbitrage equation
(2.9). This has to be consistent with the term (1− α)A

1
1−αα

α
1−α 1

q
of equation (2.9), which

depends on the domestic return to capital.
The smaller equilibrium value, q1, is an unstable root, while q2 is stable. However any

stable arm converging to q2 violates the transversality condition limt→∞ λ2 (t)K (t) ⇐⇒
limt→∞ −qλ1 (t)K (t), where K (t) = K (0) e

´ t
0

q(s)−1
h ds and λ1 (t) = λ1 (0) e−r̂t. In fact the

stable adjustment path is q (t) = q2 + (q (0)− q2) eµt, where µ < 0 is the stable eigenvalue
. Hence

´
t

0
q(s)−1

h
ds = q2−1

h
t + q(0)−q2

µ
(eµt − 1). By substituting this expression into the

transversality condition we verify that it is violated. In the case of the unstable root q1,
there is no transitional dynamics and the transversality condition is satisfied for q = q1.
Hence q is always at its steady state value q1. This implies that capital is always on its
balanced growth path, with a growth rate given by

Λ =
q1 − 1

h
(2.11)

By substituting (2.10), (2.11) and q1 into the economy’s current account, we can solve
for the stock of debt:

B (t) = −C(0)
ρ

e
(r̂−ρ)t − θK (0) e

q1−1
h t

+
�
B (0) + C(0)

ρ
+ θK (0)

�
e
−r̂t

where θ ≡

�
q1−1

h +A

1
1−α α

1
1−α+

(q1−1)2

2h −A

1
1−α α

α
1−α

�

(r̂− q1−1
h )

. In order to ensure national intertemporal

solvency, the transversality condition limt→∞ λ1 (t)B (t) = limt→∞ λ1 (0) e−r̂t
B (t) = 0 must
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be satisfied and this hold if and only if

C (0) = −ρ (B (0) + θK (0))

If C (0) > 0, it must be B (0) + θK (0) < 0. Given the definition of θ and given that the
transversality condition implies r̂ > q1−1

h
, a necessary condition is q1−1

h
+A

1
1−αα

1
1−α + (q1−1)2

2h −
A

1
1−αα

α
1−α < 0.

The equilibrium stock of public debt is hence given by

B (t) = (B (0) + θK (0)) e(r̂−ρ)t − θK (0) e
q1−1

h t (2.12)

Turnovsky’s model has some important implications. First, the small open economy
economy implies that the growth rate of domestic consumption can be different from the
growth rate of domestic output (capital), which is in sharp contrast with the closed economy
version of the model, where all the variables grow at the same rate. Second, the growth rate
of the stock of debt varies over time and asymptotically converges to [Λ,Ψ]. In particular
if Λ < Ψ, limt→+∞ B (t) = −∞ and the country would accumulate assets. On the contrary,
if Λ > Ψ, limt→+∞ B (t) = +∞ the country would accumulate a forever increasing debt.
Finally, the fact that the economy can borrow from the rest of the world does not influence
the part of domestic output invested on public expenditures, which is equal to the income
share of public goods, α, as in the Barro’s (1990) model.

3 The model

In this section we describe our economy. The production function is still given by (2.1).

The individual agent’s budget constraint includes convex investment installation costs:

K̇ = (1− τ)Y − h

2

I
2

K
− C

where 0 < τ < 1 is the output tax rate.

The governement sets taxes and expenditures accordingly with its budget constraint

Ḃ + τY = G+ r̂B (3.1)

We assume here that the governement is a net borrower on international financial markets,
hence B ≥ 0.
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We assume that the debt is bounded by tax revenue, hence public debt is constrained by

0 ≤ B ≤ λτY = φY (3.2)

where λ represents the credit multiplier. The λ = 0 case corresponds to autarky,6 while
λ > 0 depicts international finacial integration. If λ < 1 we are in presence of credit market
frictions because international lenders can just seize a fraction of collaterals in case of debt
repudiation. We shall concentrate on this last case. The parameter φ is the product between
the degree of financial imperfection and the tax rate. Hence φ < 1.

Finally the economy’s resource constraint (the economy’s current account) can be espressed
as7

Ḃ = C + I +G+
h

2

I
2

K
+ r̂B − Y (3.3)

which states the economy accumulates debt to finance its total expenditures on consumption,
public purchases, private capital, interest payments net of produced output.8

Finally the intertemporal utility is the same as the one assumed in Barro-Turnovsky’s
model and we assume no depreciation of capital, hence K̇ = I.

The social planner must choose the level of consumption, public expenditures, investment,
the stock of public debt and capital which solve the problem

max{C,G,I} U (C) =
´ +∞
0 lnCe

−ρt
dt

s. t. K̇ = I

Ḃ = C + I +G+ h

2
I
2

K
+ r̂B − AG

α
K

1−α

B ≤ φY,B ≥ 0, ∀t

K (0) , B (0) given

The conditions (3.2) define three economic regimes. First, the stock of public debt B can be
equal to zero (autarky case) or positive. In the latter case the constraint (3.2) can be non
binding or binding. The identification of the optimal autarky cases is quite straightforward.
We will rather focus on the two other regimes.

6In such a case the constraint (3.2) is binding.
7In order to obtain this espression we aggregated the consumer’s budget constraint K̇ = (1− τ)Y −

h
2
I2

K − C and combined it with the governement’s budget constraint.
8This is equal to Turnovsky’s (2009) resource constraint.
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In order to find endogenously the date at which the constraint becomes binding, we solve
the model by using the two-stage optimal control technique. As stated in the Introduction,
our paper constitutes a novelty from a technical point of view. Typical optimal switching
time problems that can be found in the literature involve technological or ecological states
of the world that are exogenously given. For example Tomiyama (1985) and Boucekkine et
al. (2004) index the successive regimes by a finite number of discrete parameter values: a
newly available technological regime may exhibit a higher productivity parameter. A more
recent branch of the literature applies the optimal switching problem to the analysis of
irreversibilities (see Boucekkine et al. 2013a, Boucekkine et al. 2013b, Prieur et al. 2011):
for example when the state variable (the stock of pollution) exceeds a certain treshold value,
the natural decay rate goes down permanently. One can reformulate this as an optimal
timing problem because the date at which the stock variable reaches the treshold becomes
a control variables.
In this paper we tackle a different type of optimal regime switching problems. The economy
starts from a situation in which the stock of public debt is such that the collateral constraint
is not binding and it becomes binding at a certain date (this is proved in Proposition 2)
which has to be optimally determined. This modifies one of the state equations. For this
reason the problem can be set as an optimal switching time problem.9 The two possible
states of the economy can be summarized as follows






Ḃ = C + I +G+ h

2
I
2

K
+ r̂B − AG

α
K

1−α if B < φY t ∈ [0, T ]

Ḃ = C + I +
�

1
φ

� 1
α
A

− 1
αB

1
αK

α−1
α + r̂B + h

2
I
2

K
− 1

φ
B if B = φY t ∈ (T,+∞)

(3.4)

Hence the problem can be reformulated as follows

max{C,G,T}
´ +∞
0 lnCe

−ρt
dt

s. t. K̇ = I

(3.4)

where K (0) and B (0) are given.
A natural approach is to decompose the problem into two sub-problems, for a given time

9Of course the problem can be solved by using the traditional method of Lagrange, but this does not
allow to determine the endogenous switching time. This methodology is contained in Appendix C.
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variable, to solve each of them, and then to identify the optimal timing T . In our case since

V (K (0) , B (0)) =

ˆ
T

0

lnCe
−ρt

dt+

ˆ +∞

T

lnCe
−ρt

dt

one can view the problem sequentially starting from the second regime, for t ∈ (T,+∞) and
then solving for the first regime. In the binding regime the problem becomes:

max{C,I} V2 =
´ +∞
T

lnCe
−ρt

dt

s. t. K̇ = I

Ḃ = C + I +
�

1
φ

� 1
α
A

− 1
αB

1
αK

α−1
α + r̂B + h

2
I
2

K
− 1

φ
B

for a given T,K (T ) , B (T )

(3.5)

The corresponding hamiltonian is

H
(2) = lnCe

−ρt + λ
(2)
1

�
C + I +

�
1

φ

� 1
α

A
− 1

αB
1
αK

α−1
α + r̂B +

h

2

I
2

K
− 1

φ
B

�
+ λ

(2)
2 I

where the upper-script “(2)” means that the constraint binds, λ(2)
1 is the co-state variable

associated to public debt and λ
(2)
2 is the co-state variable associated to capital when the

economy is in the second regime.
Then we solve

max{C,G,I} V1 =
´

T

0 lnCe
−ρt

dt+ V
∗
2 (T,B (T ) , K (T ))

s. t. K̇ = I

Ḃ = C + I +G+ h

2
I
2

K
+ r̂B − AG

α
K

1−α

K (0) , B (0) given, T free

(3.6)

and the corresponding hamiltonian is

H
(1) = lnCe

−ρt + λ
(1)
1

�
C + I +G+

h

2

I
2

K
+ r̂B − AG

α
K

1−α

�
+ λ

(1)
2 I
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where the upper-script “(1)” means that the regime is non binding.
This recursive scheme works exactly as a dynamic programming problem: the Bellman

principle applies in the two sub-interval involved by the timing problem instead of discrete
periods of time.

We will discuss the Pontryagin optimality condition in the subsequent sections.10 Here
we shall focus on the optimality conditions with respect to the timing variable T . They are
summarized by the following theorem:

Theorem 1. Let 0 < T < +∞ the optimal timing. Then

λ
(1)
1 (T ) = λ

(2)
1 (T ) (3.7)

λ
(1)
2 (T ) = λ

(2)
2 (T ) (3.8)

H
(1) (T ) = H

(2) (T ) (3.9)

A detailed proof is contained in Appendix B. Some comments are in order here. First,
the above conditions can be read as continuity or matching conditions at the junction point:
condition (3.9) imposes the continuity of the hamiltonian at the optimal junction time,
(3.7) and (3.8) the continuity of the co-state variables. Here both the co-state variables
are continuous because the state variables do not jump at the switching time: we did not
impose any treshold hence they do not have to satisfy any pure state constraint and both
the state variables can be freely chosen. Second, one can interpret the matching conditions
(3.7)-(3.9) as first order optimal timing conditions with respect to the switching date T . In
fact condition (3.9) can be rewritten as H(1) (T )−H

(2) (T ) = 0 and it can be interpreted as
the marginal gain from extending the first regime at the expense for the regime associated
to the next interval. Since there is no direct switching cost, the marginal cost is zero. Hence
this condition equalizes the marginal benefit to the marginal cost of delaying the switching
time.

3.1 Preliminary analysis of economic regimes

In this section we will solve the model by starting with the Pontryagin problem of the binding
regime and the by proceeding backward to the non binding case.

3.1.1 The binding regime

For a given T , B (T ) and K (T ), the Pontryagin necessary conditions of problem (3.5) are
10The problem is concave hence each the two sub-intervals problems is well behaved.
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1

C
e
−ρt + λ1 = 0 (3.10)

λ1

�
1 + h

I

K

�
+ λ2 = 0 (3.11)

λ1

�
1

α

�
1

φ

� 1
α

A
− 1

α

�
B

K

� 1−α
α

+ r̂ − 1

φ

�
= −λ̇1 (3.12)

−λ1

�
h

2

I
2

K2
+

1− α

α

�
1

φ

� 1
α

A
− 1

α

�
B

K

� 1
α

�
= −λ̇2 (3.13)

lim
t→∞

λ1B = 0 lim
t→∞

λ2K = 0

By using the shadow value of public debt λ1 as the numeraire and defining q = −λ2
λ1

,
we find the growth rate of capital I

K
= q−1

h
from equation (3.11) and by combining it with

(3.12) and (3.13) we obtain the arbitrage equation

q̇

q
=

1

α

�
1

φ

� 1
α

A
− 1

α

�
B

K

� 1−α
α

+ r̂ − 1

φ
− 1

q

1− α

α

�
1

φ

� 1
α

A
− 1

α

�
B

K

� 1
α

− (q − 1)2

2hq

We find it convenient to rewrite the arbitrage equation as a function of
�
G

Y

�
in order to

compare the results with Barro’s (1990) and Turnovsky’s (2009) models. From the constraint
we know that the ratio

�
B

K

�
is linked to the ratio

�
G

K

�
in the following way: B

K
= φA

�
G

K

�α.
Moreover, by using the production function G

K
= A

1
1−α

�
G

Y

� 1
1−α . Hence the arbitrage equation

becomes
q̇

q
=

1

α

�
1

φ

��
G

Y

�
+ r̂ − 1

φ
− 1

q

1− α

α
A

1
1−α

�
G

Y

� 1
1−α

− (q − 1)2

2hq
(3.14)

Log-differentiating equation (3.10) and using equation (3.12) we derive the growth rate
of consumption as a function of

�
G

Y

�
:

Ċ

C
= r̂ − 1

φ
+

1

α

1

φ

�
G

Y

�
− ρ (3.15)

which is equal to the growth rate of capital and output since the constraint is binding.

We find it convenient to rewrite the dynamical system made up of the aggregate resource
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constraint, (3.14) and (3.15) by defining b ≡ B

K
and c ≡ C

K
, so that






q̇

q
= 1

α

�
1
φ

� �
G

Y

�
+ r̂ − 1

φ
− 1

q

1−α

α
A

1
1−α

�
G

Y

� 1
1−α − (q−1)2

2hq

ċ

c
= r̂ − 1

φ
+ 1

α

1
φ

�
G

Y

�
− ρ− q−1

h

ḃ

b
= 1

b

�
c+ q−1

h
+ A

1
1−α

�
G

Y

� 1
1−α + (q−1)2

2h + r̂b− A
1

1−α
�
G

Y

� α
1−α

�
− q−1

h

(3.16)

3.1.2 The non binding regime

For a given T , B (T ) and K (T ), the first order necessary conditions of problem (3.6) writes
as11

1

C
e
−ρt + λ1 = 0 (3.17)

λ1

�
1 + h

I

K

�
+ λ2 = 0 (3.18)

G

K
= (Aα)

1
1−α ⇐⇒ G

Y
= α (3.19)

λ1r̂ = −λ̇1 (3.20)

−λ1

�
h

2

I
2

K2
+ A (1− α)

�
G

K

�α�
= −λ̇2 (3.21)

By defining q = −λ2
λ1

we obtain from equation (3.18) I

K
= q−1

h
.

By using (3.21), (3.20) and the definition of q we get the arbitrage equation

q̇

q
= r̂ − (q − 1)2

2hq
− (1− α)A

1
1−αα

α
1−α

1

q
(3.22)

Combining equation (3.17) with equation (3.20) we obtain the growth rate of consump-
tion

Ċ (t)

C (t)
= r̂ − ρ (3.23)

hence
C (t) = C (0) exp [(r̂ − ρ) t] (3.24)

where C (0) has to be determined.
Equation (3.17) detemines the trajectory of

λ1 (t) = − 1

C (t)
e
−ρt

. (3.25)

11This regime is the same as Turnovsky’s (2009) model with exception of the transversality conditions: in
our case the boundary conditions are given by the continuity conditions of Theorem 1.
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By defining c = C

K
, b = B

K
we can write the reduced system as






ċ

c
= (r̂ − ρ)− q−1

h

q̇

q
= r̂ − (q−1)2

2hq − (1− α)A
1

1−αα
α

1−α 1
q

ḃ

b
= 1

b

�
c+ q−1

h
+ A

1
1−αα

1
1−α + (q−1)2

2h + r̂b− A
1

1−αα
α

1−α

�
− q−1

h

(3.26)

3.2 Optimal switching

3.2.1 The convergence to the binding regime

In this section we study the conditions for having the convergence to the binding regime.
We suppose that the economy is in the non binding regime and we assume that the system
will be unconstrained forever, that is T = +∞. Hence, the model turns out to be the same
as Turnovsky’s (2009) that we discussed in Section 2. In this section we extend his analysis
in order to show when the corner solution T = +∞ is possible.

We have already shown that the dynamics of B (t), given by equation (2.12), depends on
the difference between the growth rate of consumption r̂ − ρ and the growth rate of capital
q1−1
h

, whose sign depends on the value of q1. If r̂ < (1− α)A
1

1−αα
α

1−α , q1 > 1 and the growth
rate of capital is positive. It is negative in the opposite case.

Proposition 2. Suppose that r̂ − ρ <
q1−1
h

. Then there exists a date T < +∞ at which the

economy hits the constraint.

If r̂− ρ <
q1−1
h

,12
B (t) is an increasing function and limt→+∞ B (t) = +∞. Hence in this

case B (t) hits the constraint at a finite time.
In the opposite case

Proposition 3. When r̂ − ρ ≥ q1−1
h

, limt→+∞ B (t) = −∞: the economy will end up in

autarky whithin a finite time.

The case r̂ − ρ ≥ q1−1
h

is more complex.
If q1 < 1, B (t) decreases exponentially and limt→+∞ B (t) = −∞.
If q1 > 1 , limt→+∞ B (t) = −∞, but B (t) can be either always decreasing or first

increasing and then decreasing, depending on the values of B(0)
K(0) . At t = 0, B� (0) is equal to:

B
� (0) = θK (0)

�
r̂ − ρ− q1 − 1

h

�
+ (r̂ − ρ)B (0)

which is negative if B(0)
K(0) < −θ

�
1− (q1−1)/h

r̂−ρ

�
.

12Notice that this case is possible only if q1 > 1.
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The other condition on B(0)
K(0) is given by the collateral constraint: B(0)

K(0) < φA
1

1−αα
α

1−α .

If φA
1

1−αα
α

1−α < −θ

�
1− (q1−1)/h

r̂−ρ

�
, then B (t) is always decreasing and never hits the

constraint.
If φA

1
1−αα

α
1−α ≥ −θ

�
1− (q1−1)/h

r̂−ρ

�
, then when B(0)

K(0) < −θ

�
1− (q1−1)/h

r̂−ρ

�
, B (t) is decreasing

and never hits the constraint. When B(0)
K(0) ≥ −θ

�
1− (q1−1)/h

r̂−ρ

�
and B(0)

K(0) is close to the
collateral constraint, B (t) is first increasing then decreasing, hence it may hit the constraint
twice.

One might think that when r̂− ρ ≥ q1−1
h

the binding regime starts at t = 0. However we
have checked numerically that r̂− ρ ≥ q1−1

h
is incompatible with the binding regime optimal

from t = 0. A detailed discussion is contained in Section 6.

3.2.2 The existence of the non binding regime: the role of investment adjust-
ment costs

We have previously shown in Section 2 that the assumption of investment adjustment costs
is necessary to rule out the irrealistic knife-edge condition that the exogenous interest rate
must be equal to the marginal return of domestic capital. But this assumption has another
important implications in our two regimes model. In the absence of capital adjustment costs,
if the knife-edge condition is not met, the regime with slack constraint does not exist because
the country would choose to invest or disinvest at an infinite rate if the internal productivity
is, respectively, greater or smaller than the interest rate (see Cohen and Sachs 1986). Since
we assume that the country is a net debtor, then the internal return must be greater than
the world interest rate, so that the economy switches to the binding regime since the initial
date. A proof of this result is included in Appendix D. Hence the presence of adjustment
costs of investment enriches the inter-regime transitional dynamics.

4 Optimal public expenditures, growth and collateral con-

straints

4.1 The optimal public expenditure - GDP ratio and the collaterals

In this section we will compare the optimal (G/Y ) of the flow-based collaterals model with
that of the Barro (1990) and Turnovsky’s (2009) models that we discussed in Section 2.

Proposition 4. The optimal public expenditures-GDP ratio of the model with the flow-based

collateral constraint is greater than the Barro (1990) and Turnovsky’s (2009) solution.
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The following equation determines the optimal (G/Y ) ratio of our model:13

∂Y

∂G
− η

λ1

∂Y

∂G
= 1 (4.1)

where η > 0 is the Lagrange multiplier attached to the equality constraint (3.2) and it is
equal to η = 1

φ

�
1− 1

α

�
G

Y

��
λ1. Being η > 0 and λ1 < 0, equation (4.1) implies that in

the binding regime (G/Y ) must be greater than α, i. e. greater than the Barro (1990) and
Turnovsk’s (2009) value. When the constraint is binding, the country uses public debt also to
finance the public expenditures-GDP ratio. The consequent increase in public expenditures
will in turn relax the borrowing contraint. This is why the public expenditures-GDP ratio
is greater than that of the literature’s models. In Turnovsky (2009) debt is not constrained.
Equation (4.1) states that the social planner will choose the optimal (G/Y ) by equating
the marginal benefit of increasing G to the marginal cost, which, by the economy’s resource
constraint, is equal to one. In the literature’s models the corresponding expression is

∂Y

∂G
= 1

Hence in the model with flow-based collateral constraint the marginal benefit is equal to
the marginal benefit of incresing G on production augmented by the term − η

λ1

∂Y

∂G
which

represents the marginal benefit of relaxing the collateral constraint.

4.2 The growth rate and the nature of the collateral constraint

The aim of this section is to compare our model’s balanced growth path properties with
those of the literature’s models where the collateral constraint is stock-based, so that public
borrowing is limited by φK.

In order to simplify the analysis, we set h = 0. As it has be shown in Section 3, in the
absence of capital adjustment costs the economy is in the binding regime from t = 0.

The optimality conditions of the model with physical capital as collateral are included
in Appendix E.

We start by comparing the optimal (G/Y ). The results are contained in the following
proposition:

Proposition 5. The optimal public expenditures-GDP ratio of the model with flow-based

collateral constraint is greater than that of the stock-based model.

13Equation (4.1) is obtained by solving the optimal control problem by attaching a Lagrange multiplier
to the equality constraint (3.2). This allows to carry out an economic interpretation, see Appendix C. This
condition is independent from the presence of adjustment costs for investment.
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The proof and the economic intuition are the same as that of Proposition 4.

We now tackle the comparison of the long-run growth rates in what follows. We shall
set α = 1/2 in order to find the analytical expression of the flow-based optimal (G/Y ):

�
G

Y

�

flow-based
=

1−
�
1− (1− φr̂)φA2

φA2
(4.2)

Hence the growth rate turns out to be equal to

gflow-based = r − 1

φ
+ 2

1

φ

1−
�

1− (1− φr̂)φA2

φA2
− ρ (4.3)

The growth rate of the stock-based economy is given by (E.1). When α = 1/2 it is equal to

gstock-based =
φ

1− φ

�
A

2

4φ
− r̂

�
− ρ (4.4)

In order to study the difference between (4.3) and (4.4) we fix r̂ and φ and let A vary.

The admissible values of A are bounded. Proposition 5 requires a public expenditures-
output ratio greater than α for optimality and this defines the lower bound of A: Amin ≡
2
√
r. The upper bound is the value of A for which the discriminant of (4.2) is positive:

Amax ≡ 1√
(1−φr̂)φ

. In the following analysis we assume r̂ < 1/2.

The difference between (4.3) and (4.4) is

gflow-based−gstock-based =
8 (1− φ)− 4φA2 (1− φ)− φ

2
A

4 − 4 (1− φ) 2
�
1− (1− φr̂)φA2 + 4φ2

r̂A
2

(1− φ)φ2A2

(4.5)
So that its sign depends on the numerator. In particular gflow-based > gstock-based if and only if

8 (1− φ)− 4φA2 (1− φ)− φ
2
A

4
> 4 (1− φ) 2

�
1− (1− φr̂)φA2 − 4φ2

r̂A
2

The left hand side and the right hand side define two decreasing and concave functions of
A, , respectively, f (A) and g (A). At Amin, f (A) = g (A). The existence of an intersection
between the two fonctions depends on the difference between the first derivative at Amin and
on the difference between the two functions at Amax. We start by analyzing the latter. At
Amax (4.5) rewrites as

gflow-based − gstock-based =
4 (1− φ) (1− 2r̂φ) (1− φr̂)− 1 + 4r̂φ (1− r̂φ)

(1− r̂φ2)
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The numerator is zero for r̂1 = 1
2φ and r̂2 =

−3+4φ
2φ(−1+2φ) . The coefficient of r̂2 is 4φ2

r̂
2 (1− 2φ)

which is non-negative for φ ≤ 1/2. In this a case 1 < r̂1 < r̂2 and gflow-based > gstock-based, ∀r̂ ∈
(0, 1).

When instead it is φ > 1/2, the situation is more complicated. In particular when
1/2 < φ ≤ 3/4, r̂2 ≤ 0 and r̂1 > 1/2,14 hence the flow-based growth rate is always greater
than the stock-based one.

When φ > 3/4, r̂2 > 0 and gflow-based > gstock-based for r̂2 < r̂ < r̂1. These results are
synthetized in the following proposition:

Proposition 6. If financial markets imperfections are not too weak, countries with a high

TFP experience a greater long-run growth rate under flow-based collaterals. Otherwise, the

flow-based growth rate is greater than the stock-based growth rate if the international interest

rate is high enough.

In the neighborhood of Amin we will study the sign of difference f
� (Amin) − g

� (Amin) =

16r̂
3
2φ

3 2r̂−1
1−2r̂φ . Given the assumption on the international interest rate and for all the values

of φ in the (0, 1) interval, f � (Amin) < g
� (Amin), so that it is gflow-based < gstock-based.

We can hence state

Proposition 7. Countries with low technological level experience a higher growth rate under

stock-based collaterals.

The economic intuition behind Propositions 6 and 7 is the following. When A is low, that
is when A is smaller than (2 − φ)/(1 − φr̂), the public debt-capital ratio of the flow-based
model, which is given by rewriting the collateral constraint as (B/K) = φA

1
1−α (G/Y )

α
1−α ,

is smaller than that of the stock-based collaterals model, (B/K) = φ. Hence the borrowing
capacity of the flow-based economy is smaller. This is the reason why for low values of A the
growth rate of the flow-based model is smaller than that of the stock-based model. However
an increase in A does not have any effect on the stock-based constraint, while it relaxes
the borrowing contraint in the flow-based case through a direct effect on the GDP and an
indirect effect on the optimal public expenditures-GDP ratio (collateral constraint effect).
Hence for a high A the growth rate of the flow-based model turns out to be greater than
that of the stock-based model.

5 Balanced growth path analysis

In this section we study the balanced growth path of the economy (BGP hereafter) in the
case where the economy ends up in the binding regime.

14r̂1 is a decreasing function of φ which varies between 1 and 1/2 when φ ∈ [1/2, 1].
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Definition. The endogenous variables (c, G/Y, q) of system (3.16) define a BGP if they

grow at a positive constant rate.

In BGP ċ

c
= 0, hence from (3.16) q = h

�
r̂ − 1

φ
+ 1

α

1
φ

�
G

Y

�
− ρ

�
+ 1. By plugging it into

the q̇ = 0 equation and rearranging terms we obtain the equation which determines the
equilibrium (G/Y ) ratio

−1−α

α
A

1
1−αφ

�
G

Y

� 1
1−α + h

2

�
1
φ

�
1
α2

�
G

Y

�2
+ [h (r̂φ− 1) + φ] 1

φ

1
α

�
G

Y

�

+ 1
φ

�
h

2 (r̂φ− 1)2 + φ (r̂φ− 1)− h

2 (ρφ)
2� = 0

(5.1)

Note that by setting φ = 0 we obtain Barro’s (1990) and Turnovsky’s (2009) optimal
public expenditures-GDP ratio: (G/Y ) = α. In the following proposition we give the
conditons for the existence of some solution for the empirical appealing case α ≤ 1

2 .15

Proposition 8. (Necessary Conditions). The dynamical system admits

(1) One solution iff h ≤ 2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
;

(2) Two solutions iff h >
2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
.

Proof. Consider equation (5.1). We define f
�
G

Y

�
≡ h

2

�
1
φ

�
1
α2

�
G

Y

�2
+[h (r̂φ− 1) + φ] 1

φ

1
α

�
G

Y

�
+

1
φ

�
h

2 (r̂φ− 1)2 + φ (r̂φ− 1)− h

2 (ρφ)
2�and g

�
G

Y

�
≡ 1−α

α
A

1
1−αφ

�
G

Y

� 1
1−α . f

�
G

Y

�
is a convex

parabola, while g
�
G

Y

�
is a convex increasing function such that g (0) = 0 and limG

Y →+∞ g
�
G

Y

�
=

+∞. The assumption α <
1
2 guarantees that limG

Y →+∞
f(G

Y )
g(G

Y )
= 0.

We study the intersections of f
�
G

Y

�
with the positive

�
G

Y

�
− axis because this helps in

determining the number of intersections between g
�
G

Y

�
and f

�
G

Y

�
(the assumption α <

1
2

limits the number of possible intersections to two). The discriminant of the second degree
equation defined by f

�
G

Y

�
= 0 is positive, hence it can have either two negative solutions,

one positive and one negative solution or two positive solutions:

h

2

�
1
φ

�
1
α2 [h (r̂φ− 1) + φτ ] 1

φ

1
α

1
φτ

�
h

2 (r̂φ− 1)2

+φ (r̂φ− 1)− h

2 (ρφ)
2� f

�
G

Y

�
= 0

1 + + + 2 negative solutions
2 + + - 1 positive and one negative
3 + - - 1 positive and one negative
4 + - + 2 positive solutions

15This range of values is consistent with the empirical estimations existing in the literature: Erberts’s
(1986) estimation for the income share of public expenditures is around 0.43, Aschauer (1989) finds that it
is 0.39, Ai and Cassou (1995) find estimations which range between 0.15 and 0.26, finally Chatterjee et al.
(2003) assume a value of 0.2.
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We define D ≡ [h (r̂φ− 1) + φ] 1
φ

1
α

and E ≡ 1
φ

�
h

2 (r̂φ− 1)2 + φ (r̂φ− 1)− h

2 (ρφ)
2�. The

following cases are possible:
1. D ≥ 0 if h ≤ φ

1−r̂φ
and E > 0 if h >

2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
. Since φ

1−r̂φ
<

2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ

the two conditions are incompatible.
2. D ≥ 0 if h ≤ φ

1−r̂φ
, E ≤ 0 if h ≤ 2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
. Hence to have case 2 we must

require h ≤ φ

1−r̂φ
.

3. D < 0 if h >
φ

1−r̂φ
, E ≤ 0 if h ≤ 2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
. Hence φ

1−r̂φ
< h ≤ 2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
.

4. D < 0 if h >
φ

1−r̂φ
, E > 0 if h >

2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
. This implies h >

2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
.

Cases 2 and 3 can be summarized by requiring h ≤ 2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
.

Both the soultions satisfy the transversality condition: limt→+∞ −qiλ
(2)
1 (t)K (t) =

−qiλ
(2)
1 (T ) exp [−ρ], i = 1, 2, where qi is the BGP value of the Tobin q.

We can prove that case 2 of Proposition 8 implies just a false multiplicity. This is shown
in the following proposition.

Proposition 9. (Uniqueness of the Balanced Growth Path). The balanced growth path is

unique.

Proof. A solution of equation (5.1) is a balanced growth path if the growth rate (3.15) is
positive, that is

r̂φ− 1 +
1

α

�
G

Y

�
≥ ρφ

This allows to write the following inequality

≤

h

2

�
1
φ

�
1
α2

�
G

Y

�2
+ h (r̂φ− 1) 1

φ

1
α

�
G

Y

�
+ 1

φ

�
h

2 (r̂φ− 1)2 − h

2 (ρφ)
2�+ ρφ

h

2

�
1
φ

�
1
α2

�
G

Y

�2
+ [h (r̂φ− 1) + φ] 1

φ

1
α

�
G

Y

�
+ 1

φ

�
h

2 (r̂φ− 1)2 + φ (r̂φ− 1)− h

2 (ρφ)
2�

= 1−α

α
A

1
1−αφ

�
G

Y

� 1
1−α

By definining l
�
G

Y

�
the first function, g

�
G

Y

�
the second one and f

�
G

Y

�
the third one, each

solution of equaion (5.1) must be such that

l

�
G

Y

�
≤ g

�
G

Y

�
= f

�
G

Y

�

in order to be a BGP. In what follows we are going to give a geometrical proof. We can
show that

- l (0) > g (0)

- l
�
G

Y

�
and g

�
G

Y

�
cross just once,

�
G

Y

�
|
l(G

Y )=g(G
Y )

= α (ρφ− r̂φ+ 1) > 0,
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-
�
G

Y

�
|
l(G

Y )=g(G
Y )

>
�
G

Y

�
1
|
g(G

Y )=0=
hα−αφ−hr̂φ−

√
α2φ2+h2α2ρ2φ2

h
,

-
�
G

Y

�
|
l(G

Y )=g(G
Y )

>
�
G

Y

�
2
|
g(G

Y )=0=
hα−αφ−hr̂φ+

√
α2φ2+h2α2ρ2φ2

h
.

These results exclude the smallest solution of case 2 of Proposition 8, as it is shown by
the figure below (Figure 5.1):

f(G/Y)

l(G/Y)

g(G/Y)

G/Y(G/Y)1
(G/Y)2

0.19 0.20 0.21 0.22

0.2

0.4

0.6

Figure 5.1: Existence and Uniqueness of the BGP

In the figure,
�
G

Y

�
1

and
�
G

Y

�
2

are the solutions of equation (5.1). For
�
G

Y

�
1
, l

��
G

Y

�
1

�
>

g
��

G

Y

�
1

�
= f

��
G

Y

�
1

�
, hence the growth rate is negative.

�
G

Y

�
1

is not a BGP. For
�
G

Y

�
2
, if, as

in the figure, l
��

G

Y

�
2

�
< g

��
G

Y

�
2

�
= f

��
G

Y

�
2

�
it is a BGP (l

�
G

Y

�
should cross g

�
G

Y

�
before

it crosses f
�
G

Y

�
). It should be remarked that the parameter A, which rules the position

of f
�
G

Y

�
on the graphic, should not be to low, otherwise we should reject also the larger

solution of case 2) in Proposition 8.16

5.1 The special case α = 1
2

In order to obtain analytical solutions for the ratio (G/Y ), we shall focus on the α = 1
2

case.17 Equation (5.1) becomes
�

2h
φ
− A

2
φ

� �
G

Y

�2
+ 2 [h (r̂φ− 1) + φ] 1

φ

�
G

Y

�

+ 1
φ

�
h

2 (r̂φ− 1)2 + φ (r̂φ− 1)− h

2 (ρφ)
2� = 0

(5.2)

16Numerical analysis has shown that the result is valid for values of A commonly used in the simulations.
The numerical results are available from the author upon request.

17This case is perfectly equivalent to the case α < 1/2, hence the conditions for the existence of a BGP
do not change.

28



In what follows we give the necessary conditions for the existence of the solutions of this
equation, under the assumption

�
2h
φ
− A

2
φ

�
> 0 (the other case is symmetric: it is sufficient

to multiply by -1 equation (5.2)).

Corollary 10. (Necessary Conditions). Assume that the discriminant of equation (5.2) is
non-negative.

The dynamical system admits

(1) One solution if h ≤ 2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
;

(2) Two solutions if h >
2φ(1−r̂φ)

(r̂2−ρ2)(φ)2+1−2r̂φ
.

The proof is identical to the one of Proposition 8.

Corollary 11. (Uniqueness of the Balanced Growth Path). The balanced growth path is

unique.

The proof is exactly the same as the one of Proposition 9 and the unique admissible
solution is

�
G

Y

�∗

=
− [h (r̂φ− 1) + φ] 1

φ
+
�

1
2(2 + 2h2ρ2 + A2(h− 2(1 + hr̂)φ+ (r(2 + hr̂)− hρ2)φ2))

�
2h
φ
− A2φ

�

(5.3)
The next step is to study of the stability of the BGP. System (3.16) allows transitional

dynamics. This is due to the presence of investment adjustment costs: the economy does
not reach immediately its steady state because adjustment costs do not allow capital to
immediately jump to its BGP. Proposition 12 contains the local stability properties of

�
G

Y

�
1
:

Proposition 12. If A
2
> − 2

h−2(1+r̂h)φ+(r̂(2+hr̂)−hρ2)φ2 , the balanced growth path solution,
�
G

Y

�∗
, is saddle-point stable.

Proof. The dynamical system is






ċ =

�
r̂ − 1

φ
+ 2

�
1
φ

�2
A

−2
b− ρ− q−1

h

�
c

q̇ =
�
r̂ − 1

φ

�
q + 2

�
1
φ

�2
A

−2
bq −

�
1
φ

�2
A

−2
b
2 − (q−1)2

2h

ḃ = c+ q−1
h

+
�

1
φ

�2
A

−2
b
2 + r̂b+ (q−1)2

2h − 1
φ
b− q−1

h
b

and the Jacobian matrix, J1, writes as
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r̂ − 1
φ
+ 2

�
1
φ

�2
A

−2
b1 − ρ− q1−1

h
− 1

h
c1 2

�
1
φ

�2
A

−2
c1

0 2
�

1
φ

�2
A

−2
b1 + r̂ − 1

φ
− q1−1

h
2
�

1
φ

�2
A

−2
q1 − 2

�
1
φ

�2
A

−2
b1

1 1
h
+ q1−1

h
− 1

h
b1 2

�
1
φ

�2
A

−2
b1 + r̂ − 1

φ
− q1−1

h





where

b1 = φA
2
− [h (r̂φ− 1) + φ] 1

φ
+
�

1
2(2 + 2h2ρ2 + A2(h− 2(1 + hr̂)φ+ (r(2 + hr̂)− hρ2)φ2))

�
2h
φ
− A2φ

�

q1 = h

�
r̂ − 1

φ
+ 2

�
1

φ

�2

A
−2
b
2
1 − ρ

�
+ 1

c1 =
q1 − 1

h
b1 +

1

φ
b1 −

q1 − 1

h
−

�
1

φ

�2

A
−2
b
2
1 − r̂b1 −

(q1 − 1)2

2h

det(J1) =
− 1√

2A2h(φ)2

�
ρ

�
2 + 2h2ρ2 + A2

�
h− 2 (1 + r̂h)φ+ (r̂ (2 + hr̂)− hρ2) (φ)2

�

�
−2hρ+

√
2
�

2 + 2h2ρ2 + A2
�
h− 2 (1 + r̂h)φ+ (r̂ (2 + hr̂)− hρ2) (φ)2

���

tr(J1) = 2ρ

The trace is positive.
The determinant is negative if A2

> − 2
h−2(1+r̂h)φ+(r̂(2+hr̂)−hρ2)φ2 .18

5.2 Comparative statics

The aim of this section is to run a comparative statics analysis. We fixed α ≤ 1/219, h = 15

(Barro and Sala-i-Martin 2003, Chatterjee et al. 2003), r̂ = 0.035 and ρ = 0.03 (these
values allow to meet the conditions needed to move from the non binding to the binding
regime. See Section 3, Proposition 2). We set A = 1 in order to obtain the a value for the
capital-output ratio consistent with the real one, which is around 2.20

Numerical Finding 1: The optimal (G/Y ) and the economy’s growth rate are increas-

18The negative determinant implies that the product of the three eigenvalues is negative, implying that
the number of negative eigenvalues is either one or three. However, the positive trace, being the sum of the
three eigenvalues, rules out the latter case, thus implying one negative eigenvalue.

19We runned the simulations for α = 0.2 (Chatterjee et al. 2003) and α = 1/2.
20We repeated the excercice for other values of the parameter and the results are robust.
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ing in φ.

Higher φ implies higher growth because a greater financial openess relaxes the borrowing
constraint (growth enhancing effect of foreign borrowing).

Finding 2. The optimal (G/Y ) is decreasing in the world interest rate r̂.

An increase in r̂ moves the function g
�
G

Y

�
of Proposition 9 up in the graph, so that (G/Y )2

decreases.
Numerical Finding 3: The growth rate is decreasing in the world interest rate r̂.

This result is rather intuitive since an increase in the international interest rate makes
borrowing more costly. The planner finances public expenditures by debt. Hence the optimal
public expenditures-GDP ratio reduces and, since public spending is the engine of growth,
the growth rate reduces as well.
Finding 4: The optimal (G/Y ) and the economy’s growth rate are increasing in the tech-

nology parameter A.

An increase in A moves the f
�
G

Y

�
curve of Proposition 9 up in the graph, so that (G/Y )2

increases. Given that (3.15) is increasing in (G/Y ), the growth rate increases as well.
Finally,

Numerical Finding 5. The optimal (G/Y ) and the economy’s growth rate are decreas-

ing in the installation cost parameter h.

Higher capital adjustment costs reduce the public expenditures-GDP ratio and the growth
rates since more resources are spent in installation.

The numerical analysis also shows that the growth rate of GDP is smaller than that
of Turnovsky (2009). We remind that in his model the country can borrow as much as it
wants because there is no collateral constraint and the growth rate of GDP coincides with
the growth rate of capital, which can be different from the growth rate of consumption.
This is fixed by the difference between the exogenous international interest rate and the
discount rate, and it is independent from any technological parameter. The growth rate in
Turnovsky turns out to be greater than that of our model due to the absence of growth-
limiting borrowing constraints, hence growth is enhanced.

6 Determination of the optimal switching date

6.1 Transitional dynamics

In this section we simulate the two-regime model in order to find the endogenous switching
date. The existence of transitional dynamics in the binding regime does not allow us to
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find analytical solutions for the date T . Our strategy is to apply the matching condition
of Theorem 1 in order to link two two-point boundary value problems, one for each regime.
The final boundary problems are commonly used for the simulation of the transition process
of growth models. We follow the method proposed by Trimborn et al. (2008a, 2008b).

The conditions (3.7) and (3.8) of Theorem 1 require the equality of the co-state variables
between the two regimes. Hence at T the following condition must hold:

q
(1) (T ) = q

(2) (T ) = q (T ) (6.1)

We replace conditions (3.9), which is difficult to implement when a regime can not be
solved in closed form, by two other conditions. Given that at T the state variables can not
jump, it must be b

(1) (T ) = b
(2) (T ) = b (T ). This value can be obtained by the collateral

constraint B

K
= b = φA

�
G

K

�α
= φA

1
1−α

�
G

Y

� α
1−α . b must also be continuous at T so that the

same is true for the public expenditures-GDP ratio. In the non binding regime
�
G

Y

�
= α,

hence when b
(1) (t) hits the constraint it must be

b
(1) (T ) = b

(2) (T ) = b (T ) = φA
1

1−αα
α

1−α (6.2)

As a consequence the value of b (T ) is known and
�
G

Y

�
is continuous at T .

The last condition stems from cequation (3.7), the equality between the shadow value of
public debt, and from the first order conditions (3.10) and (3.17). These together implies
that in this model consumption is continuous at T , so that

c
(1) (T ) = c

(2) (T ) = c (T ) (6.3)

Equation (6.3) also stems from the continuity of
�
G

Y

�
at T and from the expression of the

growth rate of consumption in the binding regime: Ċ

C
= r̂ − 1

φ

�
1− 1

α

G

Y

�
− ρ.

The adopted algorithm is the relaxation algorithm proposed by Trimborn (2008a). Our
numerical procedure starts with the simulation of the binding regimes. The inputs are given
by the boundary conditions,21 the value of b (T ), given by condition (6.2), and a guess for
the switching date T . The output is made up by q (T ) and c (T ). Condition (6.2) shows also
that the values of the variables at T do not depend on the choice of T . This choice will only
affect the duration of the transition to the steady state.

The output of the binding regime is then the input of the non binding regime, provided
by the initial value of the state variable, b (0), and its value at T , b (T ). As the first regime
does not admit any steady state, the simulation of the dynamical system (3.26) consists in

21The transversality conditions are replaced by the steady state values of the variables.
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finding the value of T such that (6.1), (6.2) and (6.3) are satisfied.

We assume the same parameters’ values of the baseline calibration of Section 5. We set
α = 1/2 because in this case we know what conditions the parameters need to meet for
the BGP to be stable (cfr. Proposition 12) and b (0) = 0.0145.22 This parameterisation
satisfies the convergence conditions stated in Proposition 2. The figures below (Figure 6.1,
Figure 6.2 and Figure 6.3) show the transition of the economy from the non binding to
the binding regime. The first panel represents the non-binding regime, the second one the
binding regime.23 The switching date is equal to 12 periods:
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Figure 6.1: The transition inter regime: the public debt-capital ratio
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Figure 6.2: The transition inter regime: the consumption-capital ratio

22The chosen value of initial conditions affects the switching date T : the smaller is b (0), the higher is T .
23The smaller concentration of the points at the beginning of the binding regime is due to the time function

chosen to implement the algorithm.
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Figure 6.3: The transition inter regime: the Tobin’s q

6.2 Comparative statics

In this section we investigate the effects of some relevant parameters on the transition be-
tween the non binding and the binding regime.

Numerical finding 6. The optimal switching date T is an increasing function of the

degree of market imperfection φ.

An increase of φ relaxes the collaterals, hence the initial value of the public debt-capital
ratio, b (0), will be farther away from the constraint so that the economy will spend more
time in the non binding regime.

Numerical finding 7. The optimal switching date T is an increasing function of the

interest rate r̂. If the interest rate is too high, the economy will stay forever in the non

binding regime and the public debt-capital ratio b (t) will tend to zero.

If the economy actually has to switch to the binding regime, the convergence conditions
of Proposition 2 need to be satisfied, that is: r̂ − ρ < (q1 − 1) /h. This condition identifies
a treshold value of A below which the economy will not converge to the binding regime.24

When the interest rate is lower than this treshold the economy does not benefit from financial
openess. The numerical simulations show that the BGP value of (G/Y ) is smaller than or
equal to α if r̂ is greater than or equal to the treshold, it is greater than α for r̂ smaller
than the treshold. The Kuhn-Tucker slackness condition (C.8) of Appendix C shows that
the BGP value of (G/Y ) needs to be grater than α in the binding regime (see Proposition
4). This means that the binding regime is not optimal. The stock of debt will become zero
at a certain point in time, and the economy will stay in autarky.

The economic interpretation of this result is related to the amount of interests to be

24The value of the treshold is 0.13
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payed. When this amount is too high, international finance is unattractive and the economy
will remain in the non-binding regime. On the other hand, for low values of r̂ the transition
to the binding regime is shorter.25

Similar treshold effects exist for the TFP parameter and the investment adjustment costs
parameter.

Numerical finding 8. The optimal switching date T is a decreasing function of the

productivity parameter A. If the productivity parameter is too low, the economy will stay

forever in the non binding regime and the public debt-capital ratio b (t) will tend to zero.

When the TFP parameter is smaller than the treshold,26 the economy does not benefit
from financial openess. As it has been shown for the parameter r̂, for too low values of the
technology parameter, the binding regime is not optimal and the economy will end up in
autarky.

On the contrary, when A becomes very large, the optimal switching date approaches
zero.27 Hence a highly developed economy will immediately benefit from financial openess.
These observations allow us to say that there is a treshold value of A that an economy must
overcome in order to enjoy the benefits of financial globalization: less developed countries
do not benefit from financial openess because the level of debt always remains smaller than
its upper bound given by the constraint,28 while more developed countries fully exploit the
effect of financial liberalization.
In our model the parameter A plays a double role. A greater A rises the economy’s produc-
tivity making the country more rich. This has in turns the effect of increasing the collaterals,
allowing to the economy to borrow more from the rest of the world. Hence the economy
will spend less time in the non binding regime reaching faster the advantages of financial
globalization.

Numerical finding 9. The optimal switching date T is an increasing function of the

adjustment costs parameter h. If it is too high, the economy will stay forever in the non

binding regime and the public debt-capital ratio b (t) will tend to zero.

An increase of the adjustment costs makes the transition slower. If h is greater than the
treshold,29 the economy remains in the non binding regime taking not benefit from financial
openess. For low values of h the transition is very fast. This is consistent with the result of
Section 3.2.2: if adjustment costs are absent, the economy switches to the binding regime

25We recall that the discount rate ρ is a lower bound for r̂. For smaller interest rate, the non binding
regime could not exist.

26Which is equal to: 0.386975.
27The simulations show that this appens for A bigger than 8
28In other terms B

K < φA
1

1−αα
α

1−α always.
29For the chosen value for the technology parameter the treshold is very big.
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at t = 0.

The above results are consistent with recent empirical literature on financial integration.
There is no consensus about the effects of financial globalization on economic growth: the
benefits depend on the countries’ situation. In particular, Kose et al. (2009) show that there
exists a certain treshold of financial and institutional development and economic features
that an economy needs to attain in order to benefit from financial liberalization. Similary,
Aizenman et al. (2011) show that economy’s GDP growth is lower in countries with high
levels of past debt and weak institutions.

This is consistent with our model’s prediction: a country with a low level of productivity,
with high adjustment costs of capital or facing a high interest rate will not benefit from
financial liberalization. In order to enjoy the advantages of international borrowing, the
economy must reach a certain level of financial and institutional development coupled with
other favorable economic features. Moreover a high interest rate can be interpreted by the
investitors as an index of high risk of a country and low institutions development, so that
the economy will be excluded from the main international capital flows.

7 Conclusions

Recent government finance statistics of European countries show that countries which ex-
perience the greater public debt issues are those with the weaker tax revenue-GDP ratio.
This suggests that public debt should be bounded by tax revenue. Hence we depart from
the existing growth literature with collateral constraint since we assume that collaterals are
flow-based instead than stock-based. We extended Barro (1990)-Turnovsky’s (2009) small
open economy model by assuming that government can finance public expenditures by bor-
rowing on imperfect international financial markets: the stock of debt is bounded by tax
revenue and creditors can just seize a fraction of collaterals in the case of default. Three are
the possible states of the economy: autarky, non binding regime and binding regime. We
give the conditions that the economy needs to meet in order to switch from the non-binding
to the binding regime, which also define the corner solutions of the problem. First, in the
absence of investment adjustment costs, the economy switches to the binding regime at the
initial date. Second, if installation costs are positive, for the economy to switch to the bind-
ing regime the TFP should be sufficiently high and/or the adjustment costs and the world
interest rate should be low enough. This is consistent with recent empirical literature on the
benefits of financial globalization: the economy can fully benefit from financial openess only
if it has attaind a certain treshold of institutional and financial development and economic
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characteristics.
We compared our results with the existing endogenous growth literature. The opti-

mal public spending-GDP ratio is greater than that of Barro-Turnovsky’s model and the
stock-based collateral constraint literature: the government is incentivated to finance public
expenditures by debt because this relaxes the collateral constraint. Finally, we found that
if financial markets imperfections are not too weak, countries with a high TFP experience
higher growth rates under the flow-based collateral assumption than under stock-based col-
laterals. Otherwise the international interest rate must be sufficiently high. When instead
the TFP is low the flow-based growth rate is always smaller than the stock-based growth
rate.
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Appendix

A The role of investment adjustment costs in a small

open economy model of endogenous growth

In the absence of investment adjustment costs the economy’s current account writes as
Ḃ = G+C + I + r̂B −AG

α
K

1−α. The planner maximizes the intertemporal utility subject
to the economy’s current account and the law of accumulation of capital over an infinite
horizon. The hamiltonian is

H = lnCe
−ρt + λ1

�
G+ C + I + r̂B − AG

α
K

1−α
�
+ λ2I

The Prontryagin’s first order conditions are

∂H

∂C
=

1

C
e
−ρt + λ1 = 0 (A.1)

∂H

∂G
= λ1 − λ1AαG

α−1
K

1−α = 0 =⇒ G

K
= A

1
1−αα

α
1−α ;

G

Y
= α (A.2)

∂H

∂I
= λ1 + λ2 = 0 (A.3)

∂H

∂B
= λ1r̂ = −λ̇1 (A.4)

∂H

∂K
= −λ1AG

α (1− α)K−α = −λ̇2 (A.5)

lim
t→∞

λ1B = 0 lim
t→∞

λ2K = 0

The absence of installation costs implies, from equation (A.3), that the sum of the shadow
value of debt and the shadow value of capital is zero. This means also that λ̇1

λ1
= λ̇2

λ2
.

Combining this together with (A.3), (A.4) and (A.5) gives

r̂ = A (1− α)

�
G

K

�α

= (1− α)A
1

1−αα
α

1−α

where
�
G

K

�
is given by (A.2). Hence the absence of investment adjustment costs constraints

the exogenous interest rate to be equal to the internal marginal productivity of capital.
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B Proof of Theorem 1

In this section we prove Theorem 1. We make use of the calculus of variations techniques
applied to the sequence of the two control sub-problems shown in the main text.

Second Regime. The problem is

max{C,I} V2 =
´ +∞
T

lnCe
−ρt

dt

s. t. K̇ = I

Ḃ = C + I +
�

1
φ

� 1
α
A

− 1
αB

1
αK

α−1
α + r̂B + h

2
I
2

K
− 1

φ
B

for a given T,K (T ) , B (T )

The associated hamiltonian is

H
(2) = lnCe

−ρt + λ
(2)
1

�
C + I +

�
1

φ

� 1
α

A
− 1

αB
1
αK

α−1
α + r̂B +

h

2

I
2

K
− 1

φ
B

�
+ λ

(2)
2 I

We denote by the upper-script “*” the paths which satisfy the first order conditions. The cor-
responding value function depends on T , B (T ) and K (T ): V ∗

2 (T,B (T ) , K (T )). Moreover,
since the problem is concave, the following envelope conditions apply

∂V
∗
2

∂T
= −H

(2)∗ (T ) (B.1)

∂V
∗
2

∂B (T )
= λ

(2)
1 (T ) (B.2)

∂V
∗
2

∂K (T )
= λ

(2)
2 (T ) (B.3)
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First regime. The corresponding control sub-problem is

max{C,G,I} V1 =
´

T

0 lnCe
−ρt

dt+ V
∗
2

s. t. K̇ = I

Ḃ = C + I +G+ h

2
I
2

K
+ r̂B − AG

α
K

1−α

K (0) , B (0) given, T free

and the corresponding hamiltonian is

H
(1) = lnCe

−ρt + λ
(1)
1

�
C + I +G+

h

2

I
2

K
+ r̂B − AG

α
K

1−α

�
+ λ

(1)
2 I

The value function can be rewritten in terms of the hamiltonian

V1 =

ˆ
T

0

�
H

(1) − λ
(1)
1 Ḃ − λ

(1)
2 K̇

�
dt+ V

∗
2 (T,B (T ) , K (T ))

Standard integrations by parts yield

ˆ
T

0

λ
(1)
1 Ḃ = λ

(1)
1 (T )B (T )− λ

(1)
1 (0)B (0)−

ˆ
T

0

λ̇
(1)
1 Bdt

ˆ
T

0

λ
(1)
2 K̇ = λ

(1)
2 (T )K (T )− λ

(1)
2 (0)K (0)−

ˆ
T

0

λ̇
(1)
2 Kdt

which allows to rewrite the value function as

V1 =

´
T

0

�
H

(1) + λ̇
(1)
1 B + λ̇

(1)
2 K

�
dt+ V

∗
2 (T,B (T ) , K (T ))− λ

(1)
1 (T )B (T )

+λ
(1)
1 (0)B (0)− λ

(1)
2 (T )K (T ) + λ

(1)
2 (0)K (0)

First order variation of V1 with respect to the state and the control variables’ paths yields

∂V1 =

´
T

0

�
∂H

(1)

∂B
∂B + ∂H

(1)

∂K
∂K + ∂H

(1)

∂C
∂C + ∂H

(1)

∂G
∂G+ ∂H

(1)

∂I
∂I + λ̇

(1)
1 ∂B + λ̇

(1)
2 ∂K

�
dt

+
�
H

(1) (T ) + λ̇
(1)
1 (T )B (T ) + λ̇

(1)
2 (T )K (T )

�
∂T

+∂V
∗
2 (T,B(T ),K(T ))

∂T
∂T + ∂V

∗
2 (T,B(T ),K(T ))

∂B(T ) ∂B (T ) + ∂V
∗
2 (T,B(T ),K(T ))

∂K(T ) ∂K (T )

−λ̇
(1)
1 (T )B (T ) ∂T − λ

(1)
1 (T ) ∂B (T )− λ̇

(1)
2 (T )K (T ) ∂T − λ

(1)
2 (T ) ∂K (T )
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Reorganizing the terms

∂V1 =

´
T

0

��
∂H

(1)

∂B
+ λ̇

(1)
1

�
∂B +

�
∂H

(1)

∂K
+ λ̇

(1)
2

�
∂K + ∂H

(1)

∂C
∂C + ∂H

(1)

∂G
∂G+ ∂H

(1)

∂I
∂I

�
dt

+
�
H

(1) (T ) + ∂V
∗
2 (T,B(T ),K(T ))

∂T

�
∂T +

�
∂V

∗
2 (T,B(T ),K(T ))

∂B(T ) − λ
(1)
1 (T )

�
∂B (T )

+
�

∂V
∗
2 (T,B(T ),K(T ))

∂K(T ) − λ
(1)
2 (T )

�
∂K (T )

A trajectory is (locally) optimal if any (local) departure from it decreases the value function:
∂V1 ≤ 0 for any ∂B (t) and ∂K (t), t ∈ (0, T ), for any ∂C (t) and ∂G (t), t ∈ [0, T ], and for
any ∂T , ∂B (T ) and ∂K (T ). This gives the following necessary conditions for an interior
maximizer: 





∂H
(1)

∂C
= 0

∂H
(1)

∂G
= 0

∂H
(1)

∂I
= 0

∂H
(1)

∂B
= −λ̇

(1)
1

∂H
(1)

∂K
= −λ̇

(1)
2

H
(1) (T ) + ∂V

∗
2 (T,B(T ),K(T ))

∂T
= 0

∂V
∗
2 (T,B(T ),K(T ))

∂B(T ) − λ
(1)
1 (T ) = 0

∂V
∗
2 (T,B(T ),K(T ))

∂K(T ) − λ
(1)
2 (T ) = 0

The first five equations are the standard Pontryagin conditions, the last three may be in-
terpreted as the optimality conditions with respect to the switching time T and the free
state values B (T ) and K (T ). Combining these last three equations with equations (B.1),
(B.2) and (B.3) obtained in the first sub-problem we obain the matching conditions stated
in Theorem 1.

C The method of Lagrange

In this section we give the solution of the binding regime derived by applying the method of
Lagrange. The method is perfectly equivalent to determine the intertemporal equilibrium
of the model, but it is not able to determine in our case the endogenous switching time T .
As it is shown in Section 3 and in Appendix B, the multi-stage optimal control allows to
determine T , B (T ) and K (T ) by using the continuity conditions.

L = lnCe
−ρt + λ1

�
G+ C + I +

h

2

I
2

K
+ r̂B − AG

α
K

1−α

�
+ λ2I + η

�
φAG

α
K

1−α − B
�
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The first order conditions are

∂L
∂C

=
1

C
e
−ρt + λ1 = 0 (C.1)

∂L
∂G

= λ1 − λ1AαG
α−1

K
1−α + ηφAαG

α−1
K

1−α = 0 (C.2)

∂L
∂I

= λ1

�
1 + h

I

K

�
+ λ2 = 0 (C.3)

∂L
∂B

= λ1r̂ − η = −λ̇1 (C.4)

∂L
∂K

= −λ1

�
h

2

I
2

K2
+ AG

α (1− α)K−α

�
+ ηφAG

α (1− α)K−α = −λ̇2 (C.5)

η ≥ 0 η
�
φAG

α
K

1−α − B
�
= 0 (C.6)

lim
t→∞

λ1B = 0 lim
t→∞

λ2K = 0

By using the shadow value of public debt λ1 as the numeraire and defining q = −λ2
λ1

, we
find I

K
= q−1

h
from equation (C.3). Hence the growth rate of capital is K̇

K
= q−1

h
.

From equation (C.4) η

λ1
= r̂ + λ̇1

λ1
. Using the definition of q this can be rewritten as

η

λ1
= r̂+ λ̇2

λ2
− q̇

q
. We can use it in equation (C.5) that we rewrite in terms of G

Y
by using the

prodiction function G

K
= A

1
1−α

�
G

Y

� 1
1−α :

− λ̇2

λ2
=

(q−1)2

2h +
�
1− r̂φ+ q̇

q
φ

�
A

1
1−α (1− α)

�
G

Y

� α
1−α

q − φA
1

1−α (1− α)
�
G

Y

� α
1−α

(C.7)

From equation (C.4) r̂ − η

λ1
= − λ̇1

λ1
. We can rewrite η

λ1
by using equation (C.2) that has

been rewritten in terms of
�
G

Y

�
: η

λ1
= 1

φ

�
1− 1

α

�
G

Y

��
, which states that, in order to be in the

binding regime, the Lagrange multiplier is positive if and only if
�
G

Y

�
> α (C.8)

Hence

r̂ − 1

φ

�
1− 1

α

�
G

Y

��
= − λ̇1

λ1
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and this one determines the growth rate of consumption

Ċ

C
= − λ̇1

λ1
− ρ = r̂

˙
−1

φ

�
1− 1

α

�
G

Y

��
− ρ (C.9)

Since − λ̇1
λ1

= − λ̇2
λ2

+ q̇

q

r̂ − 1

φ

�
1− 1

α

�
G

Y

��
− q̇

q
= − λ̇2

λ2
(C.10)

Combining (C.7) and (C.10) we can find the dynamics of q̇:

q̇

q
=

1

α

�
1

φτ

��
G

Y

�
+ r̂ − 1

φτ
− 1

q

1− α

α
A

1
1−α

�
G

Y

� 1
1−α

− (q − 1)2

2hq
(C.11)

We define c ≡ C

K
and b ≡ B

K
hence the dynamical system is equal to the one obtained in

the paper






q̇

q
= 1

α

�
1
φ

� �
G

Y

�
+ r̂ − 1

φ
− 1

q

1−α

α
A

1
1−α

�
G

Y

� 1
1−α − (q−1)2

2hq

ċ

c
= Ċ

C
− K̇

K
= r̂ − 1

φ
+ 1

α

1
φ

�
G

Y

�
− ρ− q−1

h

ḃ

b
= Ḃ

B
− K̇

K
= 1

b

�
c+ q−1

h
+ A

1
1−α

�
G

Y

� 1
1−α + (q−1)2

2h + r̂b− A
1

1−α
�
G

Y

� α
1−α

�
− q−1

h

(C.12)

D The role of adjustment costs in the determination of

the switching date

In Appendix A we have already shown that the small open economy endogenous growth
model without investment adjustment costs needs the equality between the exogenous in-
terest rate and marginal return of domestic capital to exist. In this section we prove that
if we assume that (1− α)A

1
1−αα

α
1−α > r̂, then the constraint binds for all t ≥ 0. The first

order conditions with respect to C, I, G, B and K are given by equations(A.1)-(A.5). By
solving equation (A.4) we obtain λ (t) = λ1 (0) e−r̂t. By substituting into (A.5) and solving
for λ2 (t) we obtain

λ2 (t) = −(1− α)A
1

1−αα
α

1−αλ1 (0) e−r̂t

r̂
+ d

where d ≡ λ2 (0) +
(1−α)A

1
1−α α

α
1−α λ1(0)

r̂
. It follows that λ1 (t) + λ2 (t) > 0 for t > 0 if and

only if der̂t > −λ1 (0)

�
1− (1−α)A

1
1−α α

α
1−α

r

�
. For this inequality to hold it is sufficient that
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d > −λ1 (0)

�
1− (1−α)A

1
1−α α

α
1−α

r

�
which happens when (1− α)A

1
1−αα

α
1−α > r̂, provided that

λ1 (0) + λ2 (0) > 0. Hence the the constraint is binding from t = 0.

E The stock-based collaterals optimal growth model

max U (C) =
´ +∞
0 lnCe

−ρt
dt

s. t. K̇ = I

Ḃ = C + I +G+ r̂B − AG
α
K

1−α

B = φK

for a given K (0) , B (0)

We use the constraints K̇ = I and B = φK to eliminate K:

Ḃ = − φ

1− φ

�
C +G+ r̂B − A

�
1

φ

�1−α

G
α
B

1−α

�

Hence the Hamiltonian is

H = lnCe
−ρt − µ

φ

1− φ

�
C +G+ r̂B − A

�
1

φ

�1−α

G
α
B

1−α

�

and the first order conditions write as

1

C
e
−ρt − µ

φ

1− φ
= 0

−µ
φ

1− φ

�
1− Aα

�
1

φ

�1−α

G
α−1

B
1−α

�
= 0

=⇒
�
G

K

�(2)

= (αA)
1

1−α ⇐⇒
�
G

Y

�
= α

−µ
φ

1− φ

�
r̂ − A (1− α)

�
G

B

�α �1

φ

�1−α
�
= −µ

TVC lim
t→+∞

µ (t)B (t) = 0

Hence the economy’s growth rate turns out to be equal to

gstock-based =
φ

1− φ

�
A

1
1−α (1− α)α

α
1−α

1

φ
− r̂

�
− ρ (E.1)
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