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Abstract

We study the optimal portfolio selected by an investor who conforms
to Siniscalchi (2009)’s Vector Expected Utility’s (VEU) axioms and who is
ambiguity averse. To this end, we derive a mean-variance preference gen-
eralised to ambiguity from the second-order Taylor-Young expansion of the
VEU certainty equivalent. We apply this Mean Variance Variability prefer-
ence to the static two-assets portfolio problem and deduce asset allocation
results which extend the mean-variance analysis to ambiguity in the VEU
framework. Our criterion has attractive features: it is axiomatically well-
founded and analytically tractable, it is therefore well suited for applications
to asset pricing as proved by a novel analysis of the home-bias puzzle with
two ambiguous assets.

JEL classification: D81, G11.

Keywords: Vector Expected Utility, Ambiguity, Portfolio Choice, Home-bias
Puzzle.

1 Introduction

Since the seminal works of Markowitz (1952) and Tobin (1958), mean-variance
preferences have been the cornerstone of optimal portfolio theory. An investor
with mean variance preference having to select risky assets will rank uncertain
portfolio returns r according to the following evaluation of their utility:

uMV(r) = Ep(r)− γ

2
varp(r)

where p is a given probability and γ is a measure of the aversion to variance.
The foundations of the mean-variance preferences and the link between risk and
variance for “small risks” are to be found in the classical Arrow-Pratt (Pratt, 1964;
Arrow, 1965) approximation of the Expected Utility (EU) certainty equivalent:
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for an investor with certain wealth w considering a risky investment h, the Taylor
expansion to the second order of its certainty equivalent is given by:

c(w + h) = w + Ep(h)− 1

2
γ(w)varp(h) + o(varp(h))

where γ(w) = −u′′(w)/u′(w) is the absolute risk aversion coefficient of the Bernoulli
utility function1 u.

While the mean-variance analysis remains the workhorse of modern portfolio
theory, it is well known that empirical data cannot be fully rationalised in this con-
text, especially, the equity premium cannot be explained by a risk premium only
(the “equity premium puzzle”, Mehra and Prescott, 1985) and international port-
folios are under diversified (the “home-bias puzzle”, French and Poterba, 1991).
A large literature has endeavoured to explain these “puzzles”, analysing different
shortcomings of the classical paradigm. Among these, recent advances in decision
theory aimed at generalising the EU framework have allowed to study the effect
on asset prices of ambiguity : situations where the information available to the
investor is too imprecise to be summarised by a unique probability distribution
over events. This paper fits into this field of research: its main contribution is
to propose a mean-variance preference generalised to ambiguity using Siniscalchi
(2009)’s Vector Expected Utility (VEU). We study the conditions for existence
and calculate the second order Taylor-Young expansion of the VEU certainty
equivalent from which we derive a Mean Variance Variability preference. This
flexible and tractable criterion allows not only to retrieve the existing results for
an optimal portfolio with one risky and one ambiguous asset but also to show
new results with two ambiguous assets, which we apply to the discussion of the
home-bias puzzle.

Several non EU decision theoretic models have been successfully applied to
the field of finance and to the discussions of the “puzzles”. Among these appli-
cations, some have sought to improve the mean-variance preferences: especially
Maccheroni, Marinacci, and Ruffino (Forthcoming) derive a mean-variance model
adjusted for ambiguity from a quadratic approximation of the certainty equivalent
of the smooth model of decision making under ambiguity (Klibanoff, Marinacci,
and Mukerji, 2005, henceforth KMM). Our work is closely related to this paper
which provided the impetus for our research, but is set in a different axiomatic
framework hence uses different mathematical tools: while KMM introduce second-
order acts and assume subjective expected utility over them, Siniscalchi (2009)
derives the VEU representation formula from behavioural axioms. Moreover, a
baseline probability has to be hypothesised in the smooth model while it is en-
dogenously derived from the preferences of the decision maker in the VEU model
as will be detailed below.

A decision maker (DM) conforms to the VEU set of axioms if and only if (iff)
she ranks uncertain prospects f , functions from a state space S to a consequence
space X, via the functional:

V (f) = Ep(ũ ◦ f) +A({Ep(ζi · ũ ◦ f)}06i<n) (1)

where ũ : X → R is a von Neumann-Morgenstern utility function and A : Rn → R
is a function such that for any d ∈ Rn, A(−d) = A(d) and A(0n) = 0. There

1In Mas-Colell, Whinston, and Green (1995)’s terminology, see note 12 p. 184.
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are two parts to this evaluation: the expected utility of the act according to a
baseline probability p and an adjustment to this baseline evaluation, function of
the variability of the utility profile and of the DM’s attitude toward ambiguity.

The baseline probability p is a key feature of the VEU model as it is revealed
by the preferences of the DM over complementary acts. These are acts f and f̄
such that for any states s and s′ ∈ S, 1

2f(s)+ 1
2 f̄(s) ∼ 1

2f(s′)+ 1
2 f̄(s′) which implies

that their utility profiles sum to a constant: ũ◦f = k−ũ◦f̄ for some k ∈ R. In the
words of Siniscalchi, they are “the preference counterpart of algebraic negation”.
In a portfolio application, assuming linear utility, a long and a short position of the
same value in the same asset are straightforward examples of complementary acts.
The central insight of the VEU model is that complementary acts have the same
utility variability, i.e. the same ambiguity, hence have to be ranked according to
their baseline expected utility only. Therefore “preferences over complementary
acts uniquely identify the baseline prior”. As an illustration, consider Ellsberg
(1961)’s three colour single urn experiment: a ball is drawn from an urn containing
30 red balls and 60 black and yellow balls with the proportion of black and yellow
balls unknown. Assuming linear utility, the act (10, R;−10, B; 0, Y ) that yields
$10 if a red ball is drawn and costs $10 if a black ball is drawn and the act
(−10, R; 10, B; 0, Y ) are complementary: they embed the same ambiguity and if
the DM is indifferent between these two, we can derive that p(R) = p(B). If the
DM is also indifferent between (10, R; 0, B;−10, Y ) and (−10, R; 0, B; 10, Y ), we
can infer that she is using the uniform prior as her baseline probability over the
state space S = {R,B, Y }.

The adjustment to the baseline evaluation refer to the notion of crisp acts,
which has been introduced by Ghirardato, Maccheroni, and Marinacci (2004,
henceforth GMM). They characterise the unambiguous preference as the maxi-
mal2 restriction satisfying the independence axiom of the complete DM preference.
This preference is incomplete and has a Bewley (2002) representation by a unanim-
ity criterion over a set of priors C. Acts which have the same expected utility for
all the priors in C are crisps, hence non crisps acts have “variable utility profiles”.
Siniscalchi (2009) proves that the subspace of crisp acts C and the subspace of non
crisp acts NC are orthogonal complements in L2(p) and constructs an orthonormal
basis of NC: the family {ζi}06i<n of adjustment factors which can be interpreted
as independent sources of ambiguity. Going back to equation (1), it can now be
seen that the vectorial argument of the adjustment function A is the vector of
coordinates of the utility profile in NC, which can be read as the correlations of
the utility profile with each source of ambiguity. Thanks to this construction the
VEU evaluation nicely reduces to EU for crisp acts and reflects complementarities
among ambiguous acts. This can again be illustrated using Ellsberg’s three colour
urn, as in the original paper: let ζ0 be the random variable such that ζ0(R) = 0,
ζ0(B) = 1 and ζ0(Y ) = −1 and let A(φ) = −|φ|. Assuming the uniform prior that
we derived above, any act f is evaluated through: V (f) = 1

3(f(R)+f(B)+f(Y ))−
|13(f(B)− f(Y ))|. One can check that this evaluation is consistent with the pref-
erences reported in Ellsberg (1961): V [(10, R; 0, B; 0, Y )] > V [(0, R; 10, B; 0, Y )]
but V [(10, R; 0, B; 10, Y )] < V [(0, R; 10, B; 10, Y )] highlighting the complemen-
tarity of the payoffs on the events B and Y in the last act.

2In the sense of set inclusion.
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The mathematical details of this setup are exposed in Section 2. In Sec-
tion 3 the conditions under which the first and second order differentials of the
VEU certainty equivalent exist are proven and the calculus of the second-order
Taylor-Young expansion is detailed. This quadratic approximation for a “small”
incremental act is first exposed in the most general case, then in the case where
the DM is ambiguity averse in the sense of Schmeidler (1989), i.e. a DM with a
weak preference for mixtures. The ambiguity averse case highlights the central
role of the Hessian of the adjustment function A: the Rn rotation matrix made
of its eigenvectors induces a rotated basis of the subspace NC of non-crisp acts
made of normalised sources of ambiguity which are still p-independent but are
also not correlated for the DM’s tastes in the sense that there are no cross terms
in her evaluation of an act spanning several sources. Section 4 delves further into
the properties of the quadratic approximation and proves the link between the
DM aversion to these sources of ambiguity and the eigenvalues of the Hessian
of A. The ambiguity adjustment term in the quadratic approximation can then
be written as the variance of a purely non crisp act Ah obtained by scaling and
projecting the evaluated prospect h. Building on this analysis, Section 4 proceeds
with the exposition of our generalised Mean Variance Variability criterion which
takes the form:

uMVV(h) = Ep(h)− γ

2
varp(h)− θ

2
varp(Ah).

where γ and θ are strictly positive constant that respectively measure risk aversion
and ambiguity aversion. Section 4 concludes with the similarities and differences
between our criterion and Maccheroni et al. (Forthcoming)’s. Section 5 applies
the Mean Variance Variability to the choice of an optimal portfolio and shows that
in our setting, the ambiguity adjustment leads to a modified variance-covariance
matrix for the assets, a results that lends a lot of tractability to our criterion.
Finally an analysis of the home-bias puzzle is proposed, first with a purely risky
domestic asset and an ambiguous foreign asset, then with two ambiguous assets,
a new analysis allowed by our criterion. Proofs are grouped in the appendix.

Related literature. As has been highlighted above, our work is strongly related
to Maccheroni et al. (Forthcoming) which also contains a study of ambiguity
through a second-order approximation “in the small”, a mean-variance analysis of
the optimal portfolio generalised to ambiguity and an application to the discussion
of the home-bias puzzle. Other works share at least one of these lines of research.

Nau (2003, 2006), Skiadas (2008), Izhakian and Benninga (2011) and Jewitt
and Mukerji (2011) study ambiguity in the small. Nau (2003) studies the second
order approximation of the risk premium for non EU preferences in the state-
preference framework and obtains a generalised measure of risk aversion given by
the Hessian matrix of the risk neutral probability distribution, where the vari-
ables are the finite states of the world. Nau (2006) applies these results to the
axiomatisation of a second order utility preference and exhibits a decomposi-
tion of the second order approximation of the risk premium into a “pure risk”
and an “uncertainty” premium. Skiadas (2008) studies approximations of KMM
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and divergence3 preferences’ certainty equivalents, for small risks of Brownian and
Poissonian types. Izhakian and Benninga (2011) compute in the KMM framework
an approximated uncertainty premium with an ambiguity premium component.
Jewitt and Mukerji (2011), building on their definitions of “more ambiguous” acts,
expose a second order approximation of the ambiguity premium in the KMM and
the α-MEU (see e.g. GMM) frameworks. By extending this analysis to the VEU
model, our paper allows to test the robustness of these results to the axiomatic
specifications.

Taboga (2005), Maccheroni, Marinacci, Rustichini, and Taboga (2009), Gar-
lappi, Uppal, and Wang (2007) and Boyle, Garlappi, Uppal, and Wang (2012)
apply a mean variance generalised to ambiguity to the analysis of the optimal
portfolio. Taboga (2005) shows that in the KMM model, with Constant Abso-
lute Risk Aversion (CARA) and Constant Ambiguity Attitude, Markowitz (1952)
results hold if unique values of expected returns, variances and covariances are
replaced by averages of these moments calculated for all the distributions of asset
returns considered by the DM. Furthermore, these averages are not computed
under KMM preference’s second order probability but under a modified law that
puts more weights on pessimistic priors. Maccheroni et al. (2009) build from
the variational model mean-variance preferences which are monotone. Applied to
the optimal portfolio, they lead to another generalisation of Markowitz’ results
where the unconditional means and variances are replaced by moments condi-
tioned on the wealth not exceeding a given threshold: the investor ignores the
most favourable parts of the distributions, parts which lead to high variances
hence to the non monotonicity of the original mean-variance preferences. Gar-
lappi et al. (2007) study the effect of uncertainty on estimated parameters when
the DM uses a Maxmin Expected Utility (Gilboa and Schmeidler, 1989, hence-
forth MEU) approach versus a Bayesian approach and apply their results to the
optimal portfolio. Boyle et al. (2012) propose a mean variance analysis with con-
fidence intervals on the means of the returns and an MEU investor. They show
that with increasing ambiguity, i.e. increasing widths of the confidence intervals,
the optimal portfolio changes from Markowitz’ diversified holdings to concentra-
tion on familiar assets to non participation. Our results confirm that Markowitz’
results hold in another axiomatic decision making model if classical variances and
covariances are adjusted for ambiguity, these adjustments being model specific.

Our work is also related to several papers which explore the effect of ambiguity
on asset prices and possible implications for the puzzles. Among others, Chen and
Epstein (2002) study asset returns with a continuous time multiple priors setting
and obtain a decomposition of the equity premium in terms of risk and ambi-
guity, possibly covering some of the gap between historical data and the purely
risky equity premium. Epstein and Miao (2003) use a recursive multiple prior
settings to characterise the equilibrium in an economy with two agents with het-
erogeneous beliefs and apply this result to the discussion of the home-bias puzzle.
Finally Gollier (2011) studies the comparative statics of more ambiguity aversion
and exposes the condition for an increase in ambiguity aversion to decrease the
ambiguous asset holding.

3Maccheroni, Marinacci, and Rustichini (2006) variational preferences with the Fenchel con-
jugate equal to the divergence of the priors with respect to a baseline probability.
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2 Setup and notations

We use the Anscombe and Aumann (1963, AA) setup where acts f are functions
from a state space S, endowed with a countably generated4 σ-algebra of events
Σ, to the set of all simple probability distributions over an arbitrary set of prizes
Z. We denote by F the set of all AA acts.

We consider a DM who satisfies Siniscalchi (2009)’s VEU’s axioms. Therefore
her preferences are represented by a sharp VEU functional (ũ,p, n, {ζi}06i<n, A)
such that f % g iff V (f) > V (g) where:

V (f) = Ep(ũ ◦ f) +A({Ep(ζi · ũ ◦ f)}06i<n) (2)

with ũ ◦ f(s) = Ef(s)[u] =

∫
Z
u(z) df(s)(z) for all s ∈ S.

The function A : Rn → R is such that for any d ∈ Rn, A(−d) = A(d) and
A(0n) = 0 and u is the Bernoulli utility function on which we make the usual
assumptions:

Assumption 1. u is of class C 2, strictly increasing and concave.

Recall that p is a baseline probability over the measured space (S,Σ) which is
revealed by the DM preferences over complementary acts. The set C of priors given
by the Bewley (2002) representation of the incomplete unambiguous preference
(see GMM) is symmetric around this baseline probability and all the probabilities
in this set are absolutely continuous with respect to p (Siniscalchi, 2009, Lemma
3).

An act k is crisp5 if and only if it behaves like its certainty equivalent that
is for all x ∈ R such that k ∼ x1S, for all AA act g, for all α ∈ (0, 1] we have
αg+(1−α)x1S ∼ αg+(1−α)k. A remarkable property of crisp acts is that their
expected utility is the same for all the probabilities in the set of priors C. Having
no variation of its utility profile, the vector ϕ associated to a crisp k is 0n hence
its adjustment is null and its VEU evaluation reduces to V (k) = Ep(Ek(s)[u]).

The family ζ = {ζi}06i<n is the orthonormal basis in L2(p) of the subspace NC
of non crisp acts, whose orthogonal complement is the subspace C of crisps acts.
While the VEU model allows for a countably infinite family, we will make the
assumption in the following that n is finite. The number of adjustment factors is
discussed in Siniscalchi (2009, section 4.2.) and its Proposition 1 implies that, in
an asset pricing application, there exists a crisp portfolio for any m assets when
m > n.

As we are interested in monetary outcomes, we set Z to be the real line.
Following Kreps (1988), we identify the set of our objects of choice, random
variables X : S → R, with a subset denoted Fd of the AA acts: those whose
values are the degenerate lotteries δX(s) for each s ∈ S. Therefore we have
ũ ◦ f(s) = Ef(s)[u] = u(X(s)) hence we will denote by f either the act in Fd
or the associated random variable.

As all the relevant probabilities for the DM are absolutely continuous with
respect to p, she will not discriminate between two acts which are equal p-almost

4For a discussion of this assumption, see Siniscalchi (2009, Section 2).
5We use Siniscalchi (2009)’s definition, see his paper for differences with GMM’s.
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everywhere. This allows us to embed the space Fd into L∞(p), the Banach space
of equivalent classes of essentially bounded Σ-measurable functions. As there is
only one underlying measured space, we’ll drop the reference to p and use L∞,
the associated norm will be denoted by ‖·‖∞.

We introduce three self-explanatory additional functions from L∞ to L∞ that
will be used in the remainder of this paper: U : f 7→ u ◦ f , U ′ : f 7→ u′ ◦ f
and U ′′ : f 7→ u′′ ◦ f , and, slightly changing the initial notations for the VEU
model, we define the family of functions {ϕi}06i<n from L∞ to R such that
ϕi(a) = Ep(ζi·a) and the associated vector valued function ϕ : L∞ → Rn such that
ϕ(a) = [ϕ0(a), . . . , ϕn−1(a)]T. With these additional notations, we can rewrite
equation (2) for any f ∈ Fd as:

V (f) = Ep(U(f)) +A(ϕ(U(f))) (3)

3 Quadratic approximation of the certainty equivalent

The certainty equivalent6 is a function c from L∞ to R such that for any act f
we have c(f)1S ∼ f which is V (c(f)1S) = u(c(f)) = V (f) and finally c(f) =
u−1 ◦ V (f).

We want to write the second order Taylor-Young expansion of the certainty
equivalent around an act w (the initial portfolio or initial wealth) in the direction
of a “small” incremental act h :

c(w + h) = c(w) + dwc(h) +
1

2
d2
wc(h)2 + o(‖h‖2∞) (4)

where dwc : L∞ → R is the differential at point w. We will also write dc : L∞ →
L (L∞,R) for the differential function and d2c = d( dc) : L∞ → L (L∞,L (L∞,R))
for the second order differential function.

For these differentials to exist, we need to make the following assumption:

Assumption 2. A is twice continuously differentiable over Rn.

We will denote by ∇A(x) the gradient vector of the function A at point x ∈
Rn, by ∇2A(x) its Hessian matrix at point x, by 〈x, y〉 and ‖x‖Rn the scalar
product and norm in Rn. Given that ϕ is a linear mapping (hence is of class
C∞), assumptions 1 and 2 and the following proposition imply that c is twice
differentiable (proofs are in the appendix).

Proposition 3.1. U is twice L∞-differentiable and we have for all a, h, k ∈ L∞

: daU(h) = hU ′(a), d2
aU(h, k) = hkU ′′(a).

3.1 Quadratic approximation in the general case

We can now state the results, where γ(c(w)) := −u′′(c(w))/u′(c(w)) is the Arrow-
Pratt coefficient of risk aversion valued at the certainty equivalent of the initial
wealth, ŵ := ϕ(U(w)) is the Rn vector of coordinates of the projection onto the
subspace NC of the initial wealth’s utility profile and ẇ := U ′(w)/u′(c(w)) and
ẅ := U ′′(w)/u′′(c(w)) are functions in L∞.

6Its existence and uniqueness is a consequence of the continuity and strict monotonicity of u
over the connected space R.
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Proposition 3.2. The first order differential at point w ∈ L∞ in direction h ∈
L∞ is given by :

dwc(h) = Ep(hẇ) + 〈∇A(ŵ), ϕ(hẇ)〉 (5)

Proposition 3.3. The second order differential at point w ∈ L∞ in direction
h ∈ L∞ valued at h is given by :

d2
wc(h)2 = −γ(c(w))

(
Ep(h2ẅ)− (Ep(hẇ))2

)
− γ(c(w))

( 〈
∇A(ŵ), ϕ(h2ẅ)

〉
− 〈∇A(ŵ), ϕ(hẇ)〉2

)
+ 2γ(c(w))Ep(hẇ) 〈∇A(ŵ), ϕ(hẇ)〉
+ u′(c(w))

〈
∇2A(ŵ)ϕ(hẇ), ϕ(hẇ)

〉 (6)

Special cases. The above formulae lead to some well known results when ad-
ditional assumptions are made.

If the act w is the current wealth, that is w is the degenerate random variable
w1S where we also denote by w the scalar measuring this current wealth, then
c(w1S) = w, ŵ = 0n, and ẇ = ẅ = 1S. The second order Taylor-Young expansion
is given by:

c(w + h) = w + Ep(h) + 〈∇A(0n), ϕ(h)〉 − 1

2
γ(w)varp(h)

− 1

2
γ(w)

( 〈
∇A(0n), ϕ(h2)

〉
− 〈∇A(0n), ϕ(h)〉2

)
+ γ(w)Ep(h) 〈∇A(0n), ϕ(h)〉

+
1

2
u′(w)

〈
∇2A(0n)ϕ(h), ϕ(h)

〉
+ o(‖h‖2∞).

(7)

If w is the current wealth and h is crisp, then ϕ(h) = 0n and the certainty
equivalent reduces, as expected, to the Arrow-Pratt approximation :

c(w + h) = w + Ep(h)− 1

2
γ(w)varp(h) + o(‖h‖2∞) (8)

In our paper, we will consider the case, detailed in the following subsection,
where w is the current wealth, h is not necessarily crisp and the DM is ambiguity
averse.

3.2 Quadratic approximation with ambiguity aversion

We will suppose in the remaining of the paper that the DM conforms to the
Ambiguity Aversion axiom (Axiom 9 in Siniscalchi, 2009), that is for all AA acts
f and g and for all α ∈ (0, 1), f ∼ g implies αf + (1−α)g % g. Siniscalchi (2009,
Corollary 2) proves that this is equivalent to A being nonpositive and concave.

Note that with this axiom, we could obtain Propositions 3.2 and 3.3 without
Assumption 2, indeed Rockafellar (2000, Theorem 2.8 and Corollary 2.9) proves
the existence almost everywhere of the second-order expansion of a closed, proper,
convex function f : Rn → R. Nonetheless, this would not ensure that A is differ-
entiable at 0n and that we can write equation (7).
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As A is symmetric, ie A(−ϕ) = A(ϕ), and A(0n) = 0, the concavity implies
that A reaches its maximum value 0 at point 0n that is ∇A(0n) = 0n (our smooth-
ness assumptions can be related to Segal and Spivak (1990)’s attitude toward risk
of order 2). With the Ambiguity Aversion axiom equation (7) reduces to:

c(w + h) = w + Ep(h)− 1

2
γ(w)varp(h)

+
1

2
u′(w)

〈
∇2A(0n) · ϕ(h), ϕ(h)

〉
+ o(‖h‖2∞) (9)

Being a Hessian matrix, ∇2A(0n) is symmetric and A being concave, it is
semi-definite negative (Rockafellar, 1970, Theorem 4.5).

Diagonalisation of the Hessian. The symmetry of ∇2A(0n) implies that
there exists an orthonormal basis {êi}06i<n of Rn formed with normalised eigen-
vectors (Golub and Van Loan, 1996, Theorem 8.1.1). Assume w.l.o.g. that the
eigenvalues are ordered: −λ0 > . . . > −λn−1 > 0, there exists a real orthogonal
matrix Q = (ê0, . . . , ên−1) such that QT∇2A(0n)Q = diag(λ0, . . . , λn−1) where
λi is the eigenvalue associated with the eigenvector êi. We will denote by Λ the
diagonal matrix with positive elements Λ := diag(−λ0, . . . ,−λn−1).

Q is a rotation matrix (of generic element qij) and, {ei}06i<n being the canon-
ical basis of Rn, the vectors êi = Qei define the rotated basis of Rn in which the
Hessian matrix is diagonal. Now ϕ is an isomorphism from NC (which we’ve
supposed to be finite dimensional) to Rn mapping the basis ζ = {ζi}06i<n to
{ei}06i<n. Define the family ζ̂ = {ζ̂i}06i<n by ζ̂i =

∑n−1
j=0 qjiζj . We have that

Ep(ζ̂i · ζ̂j) = Ep

((
n−1∑
k=0

qkiζk

)(
n−1∑
l=0

qljζl

))
=

n−1∑
k=0

n−1∑
l=0

qkiqlj Ep(ζk · ζl).

As ζ is an orthonormal basis, Ep(ζk · ζl) = δkl (Kronecker delta) and Ep(ζ̂i · ζ̂j) =∑n−1
k=0 qkiqkj which is the expression of the element (i, j) of the product of matrices

QTQ = Id, hence Ep(ζ̂i · ζ̂j) = δij and ζ̂ is an orthonormal basis of NC. Finally,
the mapping ϕ̂ defined by ϕ̂i(a) = Ep(ζ̂i · a) is an isomorphism from NC to Rn

mapping the basis ζ̂ to {êi}06i<n.
Taking the coordinates of the projection of h in this rotated basis ζ̂ of the space

NC allows to use the diagonalised Hessian of A. Then we can rewrite equation (9)
as:

c(w + h) = w + Ep(h)− 1

2
γ(w)varp(h)

− 1

2
u′(w) 〈Λ · ϕ̂(h), ϕ̂(h)〉+ o(‖h‖2∞) (10)

Interpretation. There is a direct interpretation of equation (10). Recall that
the VEU criterion consists of two parts: an EU evaluation using the baseline prob-
ability p and an adjustment, non positive and concave when the DM is ambiguity
averse, function of the variability of the utility profile of the act considered. The
quadratic approximation also consists of two parts: the first three terms are the
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classical Arrow-Pratt approximation of the EU certainty equivalent and the last
term is, to a factor u′(w), the approximation of the adjustment for the variability
of the utility profile. Indeed the Taylor-Young approximation to the second order
of A at 0n in direction d ∈ Rn (endowed with the basis of eigenvectors of the
Hessian of A) is:

A(d) = A(0n) + 〈∇A(0n), d〉 − 1

2
〈Λd, d〉+ o(‖d‖2Rn)

which, when the DM is ambiguity averse, reduces to:

A(d) = −1

2
〈Λd, d〉+ o(‖d‖2Rn).

Now, if we assume that the Bernoulli utility function can be locally approximated
around the point w by an affine function that is we can write U(w1S + h) ≈
u(w) + u′(w)h, then we get that ϕ̂(U(w1S + h)) ≈ u′(w)ϕ̂(h) and:

A(ϕ̂(U(w1S + h))) = −1

2
(u′(w))2 〈Λϕ̂(h), ϕ̂(h)〉+ o(‖ϕ̂(h)‖2Rn).

4 Mean Variance Variability Preference

4.1 Further analysis of the quadratic approximation in the ambiguity
averse case

The ambiguity adjustment given by the fourth term of equation (10)

− 1

2
u′(w) 〈Λ · ϕ̂(h), ϕ̂(h)〉 (11)

has two components: the variability of the utility profile of h given by ϕ̂(h), and
the attitude toward ambiguity of the DM given by Λ. The later has itself two
components: the DM overall level of aversion to ambiguity and her specific levels
of aversion to each sources of ambiguity. We would like to have a measure of the
respective contributions of this three effects using vector and matrix norms.

Starting with the overall level of aversion to ambiguity, the following property
clarifies the link between the Hessian matrix and ambiguity aversion ranking as
defined by Ghirardato and Marinacci (2002). Recall that they define7 a preference
<1 to be more ambiguity averse than a preference <2, if and only if for all f ∈ Fd
and x ∈ X, f <1 x ⇒ f <2 x. Siniscalchi (2009, Proposition 4) proves that
for two VEU preferences (u,p, n, ζ, A1) and (u,p, n, ζ, A2) this is equivalent to
A1(d) 6 A2(d) for all d ∈ Rn. In our setting this extends to:

Proposition 4.1. Consider two VEU preferences <1 and <2 on Fd satisfy-
ing the Ambiguity Aversion Axiom with (sharp, Hessian adjusted) representa-
tions (u,p, n, ζ̂, A1) and (u,p, n, ζ̂, A2) where A1 and A2 are twice continuously
differentiable with respective ordered diagonal Hessian matrices Λ1 = diag(λ1

i )
and Λ2 = diag(λ2

i ). <1 is more ambiguity averse than <2 if and only if for all
0 6 i < n:

|λ1
i | > |λ2

i |.
7This is the version in Siniscalchi (2009, Definition 4).
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Then if <1 is more ambiguity averse than <2, any matrix norm will be greater
for ∇2A1(0n) than for ∇2A2(0n), but the converse is not true. Nonetheless a
uniform scaling by a constant α of the Hessian of an adjustment function A gives
a more ambiguity averse preference if α > 1. Therefore, to evaluate the average
attitude of the DM toward ambiguity, we propose the widely used Frobenius norm
which is: ∥∥∇2A(0n)

∥∥2

F
=

n−1∑
i=0

n−1∑
j=0

∣∣∣∣ ∂2A

∂xi∂xj
(0n)

∣∣∣∣2
and in the case of a symmetric matrix (Golub and Van Loan, 1996, formula 2.5.7):

∥∥∇2A(0n)
∥∥2

F
= ‖Λ‖2F =

n−1∑
i=0

|λi|2.

Setting Λ′ = Λ/ ‖Λ‖F = diag(λ′0, . . . , λ
′
n−1) with λ′i = −λi/ ‖Λ‖F, equation (11)

rewrites as:
− 1

2
u′(w) ‖Λ‖F

〈
Λ′.ϕ̂(h), ϕ̂(h)

〉
(12)

where the scalar product blends the variability of the utility profile of h and the
DM specific levels of aversion to each sources of ambiguity. While the variability of
h could easily be measured by the standard euclidian norm in Rn, it is impossible
to disentangle these two effects, indeed, they can compensate each other and one
can only infer from the DM preferences the result of their product. Therefore we
propose that, instead of considering the coordinates ϕ̂(h) of the projection of h
in the rotated basis of the subspace of non crisp act, we use a “scaled” projection
where the scaling along each source of ambiguity is proportional to the DM level
of aversion to that source of ambiguity.

Formally define the linear operator from L2 to NC ⊂ L2:

A : h 7→ Ah =

n−1∑
i=0

√
λ′iEp(ζ̂i · h)ζ̂i

We will call Ah the scaled non crisp projection of h. Then the scalar product in
equation (12) is:

〈
Λ′ · ϕ̂(h), ϕ̂(h)

〉
=

n−1∑
i=0

λ′i(ϕ̂i(h))2 =

n−1∑
i=0

(
√
λ′iϕ̂i(h))2 =

n−1∑
i=0

(
√
λ′iEp(ζ̂i · h))2

Using Parseval’s identity (Conway, 1990, Theorem 4.13(f)) we get:

〈
Λ′ · ϕ̂(h), ϕ̂(h)

〉
=

∥∥∥∥∥
n−1∑
i=0

√
λ′iEp(ζ̂i · h)ζ̂i

∥∥∥∥∥
2

L2

= ‖Ah‖2L2

As 1S ∈ C implies Ep(1S · Ah) = Ep(Ah) = 0 we can conclude that:〈
Λ′ · ϕ̂(h), ϕ̂(h)

〉
= varp(Ah) (13)
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This equality explicits the relationship between variance and variation of the
utility profile in the VEU model and allows to write the second-order Taylor-
Young expansion of the certainty equivalent for an ambiguity averse DM as:

c(w + h) = w + Ep(h)− 1

2
γ(w)varp(h)

− 1

2
u′(w) ‖Λ‖F varp(Ah) + o(‖h‖2∞) (14)

Special cases. Two special cases where the separation of the DM attitude to-
ward ambiguity and the characteristics of the act is achieved help illustrate this
result. First, the case where a DM has equal aversion to each source of ambi-
guity, which implies that the matrix Λ′ is the identity matrix, hence that the
operator A reduces to the projection on the subspace NC of non crisp acts. Using
the orthogonal decomposition h = hC + hNC in L2 = C ⊕ NC with hC ∈ C and
hNC ∈ NC, we have that varp(Ah) is the variance of the purely non crisp compo-
nent of the act: varp(hNC) and the ambiguity aversion coefficient in equation (14)
is 1

2u
′(w) ‖Λ‖F varp(hNC). Second, the case of an “ambiguity isotropic” act h for

which there exists α ∈ R∗+ such that hNC =
∑n−1

i=0 αζ̂i i.e. ϕ̂(h) = α[1] (where [1] is
the vector made of 1s). Then we have varp(Ah) = 〈Λ′.ϕ̂(h), ϕ̂(h)〉 = α2 TrΛ′ and
as nα2 = varp(hNC), the ambiguity aversion coefficient is 1

2u
′(w) 1

n TrΛvarp(hNC).
In these two special cases the variance of the scaled non crisp projection of h is
equal, up to a positive coefficient, to the variance of the non crisp component of
h.

4.2 The Mean Variance Variability Criterion

From equation (14), the following mean variance preference generalised to take
into account the variability of utility profiles is deduced: the DM ranks prospects
h ∈ L∞ according to the function

uMVV(h) = Ep(h)− γ

2
varp(h)− θ

2
varp(Ah) (15)

where γ and θ are strictly positive coefficients measuring the respective aversion
to risk and aversion to ambiguity.

Therefore a DM using the Mean Variance Variability preference measures the
utility of a prospect by its expected utility reduced by a risk aversion factor
proportional to its variance and by a risk ambiguity factor proportional to the
variance of its scaled non crisp projection.

4.3 Comparison with Maccheroni, Marinacci, and Ruffino’s criterion

Maccheroni et al. (Forthcoming) use the smooth model of decision making under
ambiguity of Klibanoff et al. (2005) to derive the Robust Mean-Variance Prefer-
ence given by:

C(f) = EP (f)− γ

2
varP (f)− θ

2
σ2
µ(E(f))

Both their model and ours generalise the classical mean-variance preferences
by substracting a third term which accounts for the DM aversion to ambiguity and
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which is proportional to a variance. In the Robust Mean-Variance Preference, the
variance σ2

µ(E(f)) is that of the expected utility E(f) (viewed as a random vari-
able on the set of probabilities that have square integrable density with respect to
the baseline probability P ) calculated under the second order Borel probability µ.
In the Mean Variance Variability criterion, the variance varp(Ah) is that of the
scaled purely ambiguous part of f calculated under the endogenously determined
baseline probability p. Hence to apply the former model, the second order prob-
ability is needed while to apply the latter, the processes driving the independent
sources of ambiguity have to be inferred.

The formal similarity between the two criteria explains why Maccheroni et al.’s
results are easily transposed to our setting, nonetheless the properties of the VEU
adjustment factors allow to further extend their analysis as will be seen in the
next section.

5 Application to the choice of the Optimal Portfolio

In this application we suppose that the baseline probability p has been inferred
from the DM preferences over complementary acts and that all the random vari-
ables’ moments considered are calculated under this baseline probability.

We consider a k = 0 risk-free asset whose return is r0 and k = 1, . . . ,m
risky (and possibly ambiguous) linearly independent assets whose vector of excess
returns over r0, written [r̃k], is characterised by a vector of expected excess returns
[Ek] = [E(r̃k)] and a variance-covariance matrix Ω = [σkl]16k6m

16l6m
. In our extended

setting, sensibilities of these assets to ambiguity are measured by an (n,m) matrix
Z (capital zeta) whose columns are the vectors Zk = ϕ̂(r̃k) = [ϕ̂i(r̃k)] and whose
elements are Zik = ϕ̂i(r̃k) = Ep(ζ̂i · r̃k).

A portfolio is described by the vector ψ ∈ Rm of the proportions of the total
wealth invested in each risky asset. The excess returns of the portfolios are given
by r̃ψ = ψT[r̃k] and they are ranked by the DM using the Mean Variance Variabil-
ity criterion: uMVV(r̃ψ) = E(r̃ψ)− γ

2 var(r̃ψ)− θ
2 var(Ar̃ψ). The expected excess

return of the portfolio is E(r̃ψ) = ψT[Ek] and its variance is var(r̃ψ) = ψTΩψ.
The coordinates in the subspace of non crisp acts of the return of the portfolio
are given by ϕ̂i(r̃ψ) = Ep(ζ̂i · r̃ψ) =

∑m
k=1 ψk Ep(ζ̂i · r̃k) so that the vector of

coordinates ϕ̂(r̃ψ) is given by Zψ. Therefore the ambiguity adjustment given by
equation (13) is var(Ar̃ψ) = 〈Λ′ · ϕ̂(r̃ψ), ϕ̂(r̃ψ)〉 = (Zψ)TΛ′Zψ = ψTZTΛ′Zψ. Fi-
nally, the Mean Variance Variability criterion applied to the return of the portfolio
can be written as follows:

uMVV(r̃ψ) = r0 + ψT[Ek]−
γ

2
ψTΩ̂ψ where Ω̂ = Ω +

θ

γ
ZTΛ′Z (16)

5.1 Analysis of the modified variance covariance matrix Ω̂.

Denoting by
√

Λ′ = diag(
√
λ′0, . . . ,

√
λ′n−1), we have ZTΛ′Z = ZT(

√
Λ′)T
√

Λ′Z =

(
√

Λ′Z)T
√

Λ′Z, hence ZTΛ′Z is symmetric semi-definite positive. Recall that
Z = [ϕ̂(r̃1), . . . , ϕ̂(r̃m)], then the element (k, l) of ZTΛ′Z is

∑n−1
i=0 λ

′
iϕ̂i(r̃k)ϕ̂i(r̃l).
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But

cov(Ar̃k,Ar̃l) = E(Ar̃kAr̃l)

= E

(n−1∑
i=0

√
λ′iEp(ζ̂ir̃k)ζ̂i

)n−1∑
j=0

√
λ′j Ep(ζ̂j r̃l)ζ̂j


= E

(
n−1∑
i=0

λ′iEp(ζ̂ir̃k)Ep(ζ̂ir̃l)ζ̂
2
i

)
=

n−1∑
i=0

λ′iϕ̂i(r̃k)ϕ̂i(r̃l)

Therefore ZTΛ′Z is the variance covariance matrix of the scaled non crisp pro-
jections of the excess returns of the assets. The element (k, l) of the modified
variance covariance matrix Ω̂ is:

σ̂kl = cov(r̃k, r̃l) +
θ

γ
cov(Ar̃k,Ar̃l)

and especially, the diagonal terms are:

σ̂kk = var(r̃k) +
θ

γ
var(Ar̃k)

hence we have σ̂kk > var(r̃k).
The coefficients γ and θ being strictly positive and Ω being symmetric definite

positive, the matrix Ω̂ is also symmetric definite positive, hence it is associated
with a definite quadratic form. Therefore the modified variance covariance matrix
can replace the variance covariance matrix in the purely risky applications to
take into account ambiguity, and all the results concerning the efficient portfolio
frontier or the CAPM can be rewritten with these modified values. Looking at
the choice of the optimal portfolio, the first order condition for optimality when
searching for the maximum of expression (16) with no constraint on ψ is:

γΩ̂ψ = [Ek] (17)

Ω̂ is definite positive hence invertible and the solution to equation (17) is given
by:

ψ∗ =
1

γ
Ω̂−1[Ek] (18)

5.2 The case of one ambiguous asset

Whenm = 1, i.e. there is one ambiguous asset and the risk-free asset, the solution
(18) is:

ψ∗1 =
E1

γσ̂11
(19)

where σ̂11 = var(r̃1)+ θ
γ var(Ar̃1). As expected, if r̃1 is crisp, the formula reduces

to the standard mean-variance solution (Markowitz, 1952). When the return of
the asset is not crisp, it shows that an increase in the ambiguity of the asset or an
increase in the aversion to ambiguity will lead to a higher demand for the risk-free
asset.
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5.3 The case of one risky and one ambiguous asset

In the case where asset 1 is risky but crisp and asset 2 is risky and non crisp, the
modified variance covariance reduces to:

Ω̂ =

[
σ11 σ12

σ21 σ̂22

]
=

[
var(r̃1) cov(r̃1, r̃2)

cov(r̃1, r̃2) var(r̃2) + θ
γ var(Ar̃2)

]
and the solutions are:

ψ∗1 =
1

γ

E1σ̂22 − E2σ12

σ11σ̂22 − σ2
12

ψ∗2 =
1

γ

E2σ11 − E1σ12

σ11σ̂22 − σ2
12

with the ratio of the weight of the risky asset over the weight of the ambiguous
asset equal to:

ψ∗1
ψ∗2

=
E1σ̂22 − E2σ12

E2σ11 − E1σ12

As announced in section 4.3, we can now prove that Maccheroni et al. (Forth-
coming)’s asset allocation results hold in our axiomatically different setting. Name-
ly define (α, β) = argmin ‖r̃2 − (α+ βr̃1)‖L2 , the coefficients of the linear regres-
sion of the excess return of the ambiguous asset 2 over the excess return of the
risky asset 1 using the ordinary least square estimation:

β(r̃1, r̃2) =
cov(r̃1, r̃2)

var(r̃1)
and α(r̃1, r̃2) = E2 − β(r̃1, r̃2)E1

Then we have the following relationships:

Proposition 5.1. Proportion of the ambiguous asset:

sgnψ∗2 = sgnα(r̃1, r̃2)

Change in ambiguity aversion θ:

sgn
∂

∂θ

(
ψ∗1
ψ∗2

)
= sgnα(r̃1, r̃2)

sgn
∂ψ∗2
∂θ

= − sgnα(r̃1, r̃2), sgn
∂ψ∗1
∂θ

= sgnα(r̃1, r̃2)β(r̃1, r̃2)

Change in risk aversion γ:

sgn
∂

∂γ

(
ψ∗1
ψ∗2

)
= sgn

∂ψ∗2
∂γ

= − sgnα(r̃1, r̃2)

This proves that the DM will hold a long position in the ambiguous asset if
α(r̃1, r̃2) is positive and a short position otherwise. As this coefficient is posi-
tive when there is an expected added positive return in holding one unit of the
ambiguous asset instead of β(r̃1, r̃2) units of the risky asset, the investor chooses
to trade off between a portfolio with a lower ambiguity and a potential larger
return. The two sides of this trade-off are weighted by her aversion parameters
as, in all cases, she will decrease in absolute terms the ambiguous asset holding
when her ambiguity aversion θ increases. It is also noticeable that the variation
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of the ratio of the two assets for a change in risk aversion and for a change in
ambiguity aversion are of opposite signs, a relationship first obtained with the
smooth model of decision making under ambiguity from simulations by Klibanoff
et al. (2005, Example 2) and confirmed by Maccheroni et al. (Forthcoming). This
paper proves that this inverse relationship also holds in the axiomatic setting of
the Vector Expected Utility.

These results are a sound foundation for a discussion of the home-bias puzzle:
replacing “risky asset” by “domestic asset” and “ambiguous asset” by “foreign asset”
in the above paragraph gives an explanation through the investors aversion to
ambiguity of the lack of diversification of international portfolios first exposed
by French and Poterba (1991). Nonetheless it doesn’t seem necessary that the
domestic asset should be purely risky. Therefore we propose in the next section
an analysis of the case where the two assets are ambiguous, with the foreign
asset either “objectively” more ambiguous than the domestic one (as measured
by the Rn norm of their vectors of non crisp coordinates) or perceived by the
DM as more ambiguous (as measured by its correlation with sources of ambiguity
associated with larger eigenvalues of the Hessian). To the best of our knowledge,
this analysis has not yet been undertaken while the analytical tractability of our
setting rendered it possible.

5.4 The case of two ambiguous assets

In the case where the two assets are not crisp, the modified variance covariance
matrix is:

Ω̂ =

[
σ̂11 σ̂12

σ̂21 σ̂22

]
=

[
var(r̃1) + θ

γ var(Ar̃1) cov(r̃1, r̃2) + θ
γ cov(Ar̃1,Ar̃2)

cov(r̃1, r̃2) + θ
γ cov(Ar̃1,Ar̃2) var(r̃2) + θ

γ var(Ar̃2)

]

and the solutions are:

ψ∗1 =
1

γ

E1σ̂22 − E2σ̂12

σ̂11σ̂22 − σ̂2
12

ψ∗2 =
1

γ

E2σ̂11 − E1σ̂12

σ̂11σ̂22 − σ̂2
12

(20)

We will denote by A = E1σ̂22−E2σ̂12, B = E2σ̂11−E1σ̂12 and C = σ̂11σ̂22− σ̂2
12

so that ψ∗1 = 1
γ
A
C and ψ∗2 = 1

γ
B
C .

To analyze these results we need to decompose the excess returns into their
respective crisp and ambiguous parts. Recall that in L2, the subspaces C of crisp
acts and NC of non crisp acts are orthogonal complement (Siniscalchi, 2009, p. 844),
then we can write r̃1 = r̃C1 + r̃NC1, r̃2 = r̃C2 + r̃NC2 with r̃C1, r̃C2 ∈ C, r̃NC1, r̃NC2 ∈ NC

and r̃NC1 =
〈
Z1, ζ̂

〉
, r̃NC2 =

〈
Z2, ζ̂

〉
. Given the orthogonality of C and NC, we

have, for i = {1, 2}:

var(r̃i) = var(r̃Ci) + var(r̃NCi) with var(r̃NCi) = ‖Zi‖2Rn

cov(r̃1, r̃2) = cov(r̃C1, r̃C2) + cov(r̃NC1, r̃NC2) with cov(r̃NC1, r̃NC2) = 〈Z1, Z2〉

var(Ar̃i) =
∥∥∥√Λ′Zi

∥∥∥2

Rn
and cov(Ar̃1,Ar̃2) =

〈
Λ′Z1, Z2

〉
Using some straightforward notations: Ei = E(r̃i) = E(r̃Ci), σ2

i = var(r̃i),
σ2
Ci = var(r̃Ci), σ2

NCi = var(r̃NCi), σ2
Ai = var(Ar̃i) and cov(r̃C1, r̃C2) = ρCσC1σC2,
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cov(r̃NC1, r̃NC2) = ρNCσNC1σNC2, cov(Ar̃1,Ar̃2) = ρAσA1σA2, the numerators and
the denominator of the solutions to the optimal portfolio problem can then be
detailed:

Proposition 5.2. In equation (20), the numerators are:

A =
(
E1σ

2
C2 − E2ρCσC1σC2

)
+
(
E1σ

2
NC2 − E2ρNCσNC1σNC2

)
+ θ

γ

(
E1σ

2
A2 − E2ρAσA1σA2

)
B =

(
E2σ

2
C1 − E1ρCσC1σC2

)
+
(
E2σ

2
NC1 − E1ρNCσNC1σNC2

)
+ θ

γ

(
E2σ

2
A1 − E1ρAσA1σA2

)
and the denominator is:

C = σ2
C1σ

2
C2(1− ρ2

C) + σ2
NC1σ

2
NC2(1− ρ2

NC) + θ2

γ2
σ2
A1σ

2
A2(1− ρ2

A)

+ (σC1σNC2 − σC2σNC1)2 + 2σC1σC2σNC1σNC2(1− ρCρNC)
+ θ

γ

[
(σC1σA2 − σC2σA1)2 + 2σC1σC2σA1σA2(1− ρCρA)

]
+ θ

γ

[
(σA1σNC2 − σA2σNC1)2 + 2σNC1σNC2σA1σA2(1− ρNCρA)

]
It follows directly that C > 0 hence the choice of a long or a short position

in the two assets is determined by the signs of the numerators A and B. These
formulae also highlight the pivotal role of the correlations (of the crisp parts and
of the ambiguous parts) of the excess returns in determining the composition of
the optimal portfolio.

We will now study the case where each asset is correlated to a distinct source
of ambiguity, therefore their non crisp components are given by r̃NC1 = Z11ζ̂1 and
r̃NC2 = Z02ζ̂0. As the sources are independent this implies ρNC = ρA = 0 that is
there is no possibility to hedge away some or all of the ambiguity by holding the
two assets. The DM has again to trade off expected return, risk and ambiguity
following the Mean Variance Variability criterion which represents her utility. To
further focus on the effects of ambiguity, we will consider two assets whose excess
returns have similar crisp parts with the same expected return E1 = E2 = E and
the same variance σ2

C1 = σ2
C2 = σ2

C. Recall that the DM is more averse to the
source of ambiguity ζ̂0 than to the source ζ̂1 (λ′0 > λ′1), hence one may consider
in an home-bias puzzle setting that asset 1 is the domestic one and asset 2 the
foreign one.

From proposition 5.2 we get:

A = E

[
σ2
C(1− ρC) + Z2

02(1 +
θ

γ
λ′0)

]
B = E

[
σ2
C(1− ρC) + Z2

11(1 +
θ

γ
λ′1)

]
Then as ψ∗1/ψ∗2 = A/B:

sgn
∂

∂θ

(
ψ∗1
ψ∗2

)
= sgn

[
σ2
C(1− ρC)(λ′0Z2

11 − λ′1Z2
02) + Z2

11Z
2
02(λ′0 − λ′1)

]
sgn

∂

∂γ

(
ψ∗1
ψ∗2

)
= sgn

[
σ2
C(1− ρC)(λ′1Z2

02 − λ′0Z2
11) + Z2

11Z
2
02(λ′1 − λ′0)

]
First, the inverse relationship between the sensitivity of the composition of the
portfolio to ambiguity aversion and to risk aversion holds with two ambiguous
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assets correlated to distinct sources of ambiguity. Second, we have that ψ∗1 > ψ∗2
if and only if Z2

02(1 + θ
γλ
′
0) > Z2

11(1 + θ
γλ
′
1), hence it is possible that asset 2 could

get a larger share of the portfolio than asset 1 if the ratio of their exposures to
ambiguity Z02/Z11 was to compensate for the DM higher aversion to the source ζ̂0.
While this case is possible, it would not illustrate properly a home-bias application
as it would mean comparing a high beta domestic stock to a low beta foreign stock.
Therefore, we can sharpen the above results by assuming that Z2

11 = Z2
02 = σ2

NC

which help focus the analysis on the DM different attitude toward the two sources
of ambiguity. With this added assumption we have a larger holding of the domestic
asset 1 while both assets have the same expected return E and the same variance
σ2
C + σ2

NC and we have

sgn
∂

∂θ

(
ψ∗1
ψ∗2

)
= sgn

[
(λ′0 − λ′1)(σ2

C(1− ρC) + σ2
NC)
]

= sgn(λ′0 − λ′1) > 0

hence an increase in ambiguity aversion will decrease the holding of the foreign
asset 2. Therefore the salient facts of the home-bias puzzle are retrieved in our
setting with two ambiguous assets, one perceived as more ambiguous than the
other by the DM, instead of one risky and one ambiguous asset.

6 Conclusion

In this paper we have aimed to corroborate the proposition that ambiguity mat-
ters for modern portfolio theory inasmuch as it can help understand some of
the otherwise puzzling features of empirical data. To this end, we have stud-
ied compositions of optimal portfolios when asset returns are ambiguous using a
generalised mean-variance preference that we have founded on an approximation
“in the small” of Siniscalchi (2009)’s Vector Expected Utility’s certainty equiv-
alent. The VEU model has been chosen for its axiomatic foundations which
are built upon the seminal work of Gilboa and Schmeidler (1989), extended by
Ghirardato, Maccheroni, and Marinacci (2004) and Maccheroni, Marinacci, and
Rustichini (2006) among others, papers with numerous applications to finance.
Its axiomatic foundations also have a very appealing behavioural interpretation
in asset markets: indeed, in this context complementary acts have a straightfor-
ward meaning (detailed in the introduction) and the cognitive assumption which
underpins the central “Complementary Independence” axiom — complementary
acts have the same variability — is easily subscribed to. Moreover the model per-
mits an identification of a baseline prior from the DM preferences and accounts
for eventwise complementarity which may allow for “ambiguity diversification”.

The calculus of the second-order Taylor-Young expansion of the VEU certainty
equivalent has lead to a generalisation of the mean-variance preference through
a new term which measures the aversion to ambiguity of the DM and comple-
ments the classical aversion to variance. Thanks to its analytical tractability, this
Mean Variance Variability criterion has allowed to generalise Markowitz (1952)’
results: we have shown that aversion to ambiguity can be accounted for by a
variance-covariance matrix modified by the second order moments of the scaled
non crisp projections of the asset returns. Our findings have not only confirmed
the robustness to axiomatic specifications of some of the literature’s results on
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asset prices under ambiguity obtained with other models, but also have extended
the existing analysis to multiple ambiguous assets, hence have allowed to propose
a novel discussion of the home-bias puzzle modeled with two ambiguous assets.
Among other results, we have shown that the inverse relationship between the
sensitivities of the portfolio composition to aversion to risk and aversion to am-
biguity still hold with two ambiguous assets and that the holding of the most
ambiguous asset will decline with heightened aversion to ambiguity.

Finally this Mean Variance Variability criterion opens the way for further
research on equilibrium asset prices, possibly in a continuous time setting, and
to some empirical studies and calibrations which are facilitated by its simple
formulation. Especially, a study of the drivers of assets returns and risks could
help define the main independent sources of ambiguity which are central to the
workings of VEU model.

Appendix A Proofs

A.1 Quadratic approximation

For the calculus of the differential, we introduce 2 additional functions:

Π: L∞ → Rn × R W : Rn × R→ R

a 7→
(
ϕ(a)
Ep(a)

)
(ϕ, λ) 7→ λ+A(ϕ)

With these additional notations, we can rewrite equation (3) as

V (f) = W ◦Π ◦ U(f)

and the certainty equivalent as

c(f) = u−1 ◦W ◦Π ◦ U(f).

Note that, in this section, to keep the notations as light as possible, 〈a, b〉 will be
the scalar product of Rn when the functions A and ϕ are involved and the scalar
product of Rn+1 when the functions W and Π are involved.

Proof of Proposition 3.1 Take ε ∈ R∗+. As u is differentiable over R, at any
point x there exists α ∈ R∗+ such that for all y ∈ R, |y| 6 α implies |u(x + y) −
u(x) − y.u′(x)| 6 ε|y|. Hence for a given a ∈ L∞ and for any h ∈ L∞ and s ∈ S
such that |h(s)| 6 α we have |u(a(s) + h(s))− u(a(s))− h(s).u′(a(s))| 6 ε|h(s)|.

Now choose h such that ‖h‖∞ 6 α, and set Eh := {s | |h(s)| > ‖h‖∞} then
by definition p(Eh) = 0. For all s ∈ S \ Eh we have |h(s)| 6 ‖h‖∞ 6 α and the
previous inequality holds: |u(a(s) + h(s)) − u(a(s)) − h(s).u′(a(s))| 6 ε|h(s)| 6
ε ‖h‖∞. As the lhs is bounded p-almost everywhere by ε ‖h‖∞ so is its essential
supremum and we get the desired result:∥∥U(a+ h)− U(a)− h.U ′(a)

∥∥
∞ 6 ε ‖h‖∞

which is U is differentiable and daU(h) = hU ′(a).
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Using the same reasoning replacing u by u′ which is also differentiable over
R, we get that for all ε ∈ R∗+ there exists α ∈ R∗+ such that for all k ∈ L∞ with
‖k‖∞ 6 α we have∥∥U ′(a+ k)− U ′(a)− k.U ′′(a)

∥∥
∞ 6 ε ‖k‖∞ .

Then

‖ dU(a+ k)− dU(a)− kU ′′(a)‖L (L∞,L∞)

= sup
‖h‖∞61

∥∥dU(a+ k)(h)− dU(a)(h)− hkU ′′(a)
∥∥
∞

= sup
‖h‖∞61

∥∥hU ′(a+ k)− hU ′(a)− hkU ′′(a)
∥∥
∞

using Hölder’s inequality8:

6 sup
‖h‖∞61

‖h‖∞
∥∥U ′(a+ k)− U ′(a)− kU ′′(a)

∥∥
∞

6
∥∥U ′(a+ k)− U ′(a)− kU ′′(a)

∥∥
∞

6 ε ‖k‖∞
which is the result : U is twice differentiable and d2

aU(k, h) = khU ′′(a).

Proof of Proposition 3.2 Using the chain rule for differentials we get:

dwc(h) = dw(u−1◦W ◦Π◦U)(h) = dW◦Π◦U(w)u
−1◦ dΠ◦U(w)W ◦ dU(w)Π◦ dwU(h)

The differential of U is given by Proposition 3.1, the differential of Π, a linear
mapping, is itself, the differential ofW is given by its gradient thanks to Assump-
tion 2 and the differential of u−1 is given by the following lemma:

Lemma A.1. As u is continuously differentiable and strictly increasing, u−1 is
L∞-differentiable and for all a, h ∈ L∞: dau

−1(h) = h/u′(u−1(a)).

Proof. As u is strictly monotone and continuous, it is an homomorphism, and
being strictly monotone and differentiable, it is a diffeomorphism. Then its
differential is an isomorphism whose inverse is ( dbu)−1 = du(b)(u

−1). Setting
b = u−1(a) we have that da(u

−1) ◦ du−1(a)u = Id, that is for all h ∈ R,
da(u

−1) ◦ (h.u′(u−1(a)) = h. By the linearity of the differential we obtain

u′(u−1(a)). da(u
−1)(h) = h

which gives the result.

Assembling all the pieces, we get:

dwU(h) = hU ′(w)

dU(w)Π(hU ′(w)) = Π(hU ′(w))

dΠ◦U(w)W (Π(hU ′(w))) =
〈
∇W (Π(U(w))),Π(hU ′(w))

〉
dW◦Π◦U(w)u

−1(
〈
∇W (Π(U(w))),Π(hU ′(w))

〉
) =
〈∇W (Π(U(w))),Π(hU ′(w))〉
u′(u−1(W ◦Π ◦ U(w)))

8See, for example, Aliprantis and Border, 2006, Prop. 13.2.
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As u−1(W ◦Π ◦ U(w)) = c(w), this is:

dwc(h) =
〈∇W (Π(U(w))),Π(hU ′(w))〉

u′(c(w))
(21)

From the definition of W we have ∇W = (∇A, 1). Using the notations ŵ :=
ϕ(U(w)) and ẇ := U ′(w)/u′(c(w)), the preceding formula is:

dwc(h) =
Ep(hU ′(w)) + 〈∇A(ŵ), ϕ(hU ′(w))〉

u′(c(w))

= Ep

(
h
U ′(w)

u′(c(w))

)
+

〈
∇A(ŵ), ϕ

(
h
U ′(w)

u′(c(w))

)〉
= Ep (hẇ) + 〈∇A(ŵ), ϕ (hẇ)〉

Proof of Proposition 3.3 To obtain the second order differential, we need to
differentiate the first-order differential function dc : L∞ → L (L∞,R) such that
dc(w) = dwc.

We introduce some auxiliary functions :

• α : L∞ → L (L∞,Rn+1) such that α(w) : L∞ → Rn+1 is defined by

α(w)(h) = Π(hU ′(w)),

• β : L∞ → R× Rn+1 ×L (L∞,Rn+1) such that

β(w) =
(
u′(c(w)),∇W (Π(U(w))), α(w)

)
,

• γ : R× Rn+1 ×L (L∞,Rn+1)→ L (L∞,R) such that

γ(t, a, ϕ) =
〈a, ϕ〉
t

.

Then, starting from equation (21), we have dc = γ ◦ β and d2
wc = dw(γ ◦ β) =

dβ(w)γ ◦ dwβ.

Step 1: dwα. Take ε ∈ R∗+. As U ′ is differentiable there exists α ∈ R∗+ such
that for all k ∈ L∞ with ‖k‖∞ 6 α we have∥∥U ′(w + k)− U(w)− kU ′′(w)

∥∥
∞ 6 ε ‖k‖∞ .

Then for any h ∈ L∞, using Hölder’s inequality:∥∥h.(U ′(w + k)− U(w)− kU ′′(w))
∥∥
∞ 6 ‖h‖∞

∥∥U ′(w + k)− U(w)− kU ′′(w)
∥∥
∞

6 ε ‖h‖∞ ‖k‖∞

As all norms are equivalent on Rn+1, we can choose w.l.o.g. ‖Π(a)‖Rn+1 =
sup06i6n |Πi(a)| for any a ∈ L∞. Then

‖Π(a)‖Rn+1 = sup
06i6n

|Ep[ζi.a]| 6 sup
06i6n

‖ζi.a‖L1
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if we set ζn = 1S. Using again Hölder’s inequality we get ‖ζi.a‖L1 6 ‖ζi‖L1 ‖a‖∞.
Then a corollary of the same inequality (Aliprantis and Border, 2006, Corol-
lary 13.3) states that L2(p) ⊂ L1(p) and, when p(Ω) = 1, ‖ζi‖L1 6 ‖ζi‖L2 . Now re-
call that the {ζi}06i<n have been obtained through the Gram-Schmidt orthogonal-
ization process in L2 (Siniscalchi, 2009, p. 843), hence for all 0 6 i < n, ‖ζi‖L2 = 1,
to conclude that sup06i6n ‖ζi.a‖L1 6 ‖a‖∞ and finally ‖Π(a)‖Rn+1 6 ‖a‖∞.

Combining the previous results we have:

‖α(w + k)(h)− α(w)(h)−Π(hkU ′′(w))‖Rn+1

= ‖Π(hU ′(w + k))−Π(hU(w))−Π(hkU ′′(w))‖Rn+1

6
∥∥hU ′(w + k)− hU(w)− hkU ′′(w)

∥∥
∞

6 ε ‖h‖∞ ‖k‖∞

Then

‖α(w + k)− α(w)−Π(·kU ′′(w))‖L (L∞,Rn+1)

= sup
‖h‖∞61

‖α(w + k)(h)− α(w)(h)−Π(hkU ′′(w))‖Rn+1 6 ε ‖k‖∞

which proves that the differential of α at point w in direction k is the function
dwα(k) : L∞ → L (L∞,Rn+1) such that dwα(k, h) = Π(hkU ′′(w)).

Step 2: dwβ. Using the rules of differentiation for functions with values in
a product space we have :

dwβ =
(

dw(u′ ◦ c), dw(∇W ◦Π ◦ U), dwα
)

Where we have for all k ∈ L∞ :

dw(u′ ◦ c)(k) = dc(w)u
′ ◦ dwc(k) = u′′(c(w)). dwc(k)

=
u′′(c(w))

u′(c(w))

〈
∇W (Π(U(w))),Π(kU ′(w))

〉

dw(∇W ◦Π ◦ U)(k) = dΠ◦U(w)∇W ◦ dU(w)Π ◦ dwU(k)

= dΠ◦U(w)∇W (Π(kU ′(w)))

= ∇2W (Π(U(w))).Π(kU ′(w))

and dwα has been obtained at step 1.

Step 3: dwγ. We now need the differential of a function defined on a product
space. Let (s, b, ψ) be a point in R×Rn+1×L (L∞,Rn+1). Then for any direction
(t, a, ϕ) in the same product space define the functions :

γ1 : R→ L (L∞,R) such that γ1(t) = γ(t, b, ψ) = 〈b, ψ〉 /t
γ2 : Rn+1 → L (L∞,R) such that γ2(a) = γ(s, a, ψ) = 〈a, ψ〉 /s

γ3 : L (L∞,Rn+1)→ L (L∞,R) such that γ3(ϕ) = γ(s, b, ϕ) = 〈b, ϕ〉 /s
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so that we have

d(s,b,ψ)γ(t, a, ϕ) = dsγ1(t) + dbγ2(a) + dψγ3(ϕ).

Now we compute the three partial differentials. The first one is obtained
directly by the derivative: dsγ1(t) = − 〈b,ψ〉

s2
t. The second and third ones are direct

consequences of the linearity of the scalar product, indeed we have γ2(b + a) =
γ2(b) + γ2(a) hence dbγ2(a) = γ2(a) = 〈a, ψ〉 /s and γ3(ψ + ϕ) = γ3(ψ) + γ3(ϕ)
hence dψγ3(ϕ) = γ3(ϕ) = 〈b, ϕ〉 /s. To summarize:

d(s,b,ψ)γ(t, a, ϕ) = −〈b, ψ〉
s2

t+
〈a, ψ〉
s

+
〈b, ϕ〉
s

Step 4: d2
wc. Going back to second order differential we have:

d2
wc(k) = dβ(w)γ ◦ dwβ(k)

= d(u′(c(w)),∇W (Π(U(w))),α(w))γ ◦ dwβ(k)

= d(u′(c(w)),∇W (Π(U(w))),α(w))γ( dw(u′ ◦ c)(k), dw(∇W ◦Π ◦ U)(k), dwα(k))

using Step 3:

d2
wc(k) = −〈∇W (Π(U(w))), α(w)〉

(u′(c(w))2
dw(u′ ◦ c)(k)

+
〈 dw(∇W ◦Π ◦ U)(k), α(w)〉

u′(c(w))

+
〈∇W (Π(U(w))), dwα(k)〉

u′(c(w)

using Step 2:

d2
wc(k) = − u′′(c(w))

(u′(c(w))3

〈
∇W (Π(U(w))),Π(kU ′(w))

〉
〈∇W (Π(U(w))), α(w)〉

+
1

u′(c(w))

〈
∇2W (Π(U(w))).Π(kU ′(w)), α(w)

〉
+

1

u′(c(w))
〈∇W (Π(U(w))), dwα(k)〉

Taking the value at h and using Step 1:

d2
wc(k, h) = − u′′(c(w))

(u′(c(w))3

〈
∇W (Π(U(w))),Π(kU ′(w))

〉 〈
∇W (Π(U(w))),Π(hU ′(w))

〉
+

1

u′(c(w))

〈
∇2W (Π(U(w))).Π(kU ′(w)),Π(hU ′(w))

〉
+

1

u′(c(w))

〈
∇W (Π(U(w))),Π(hkU ′′(w))

〉
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Finally, when k = h as needed in the Taylor-Young formula:

d2
wc(h)2 = − u′′(c(w))

(u′(c(w))3

(〈
∇W (Π(U(w))),Π(hU ′(w))

〉)2
+

1

u′(c(w))

〈
∇2W (Π(U(w))).Π(hU ′(w)),Π(hU ′(w))

〉
+

1

u′(c(w))

〈
∇W (Π(U(w))),Π(h2U ′′(w))

〉
As the Hessian matrix of W is the Hessian matrix of A bordered with zeros, we
can express this result with the functions A and ϕ:

d2
wc(h)2 = − u′′(c(w))

(u′(c(w))3

(
Ep(hU ′(w)) +

〈
∇A(ϕ(U(w))), ϕ(hU ′(w))

〉)2
+

1

u′(c(w))

〈
∇2A(ϕ(U(w))).ϕ(hU ′(w)), ϕ(hU ′(w))

〉
+

1

u′(c(w))

(
Ep(h2U ′′(w)) +

〈
∇A(ϕ(U(w))), ϕ(h2U ′′(w))

〉)
With ŵ := ϕ(U(w)) and distributing the denominators:

d2
wc(h)2 = −u

′′(c(w))

u′(c(w)

(
Ep

(
h
U ′(w)

u′(c(w))

)
+

〈
∇A(ŵ), ϕ

(
h
U ′(w)

u′(c(w))

)〉)2

+ u′(c(w))

〈
∇2A(ŵ).ϕ

(
h
U ′(w)

u′(c(w))

)
, ϕ

(
h
U ′(w)

u′(c(w))

)〉
+
u′′(c(w))

u′(c(w))

(
Ep

(
h2 U ′′(w)

u′′(c(w))

)
+

〈
∇A(ŵ), ϕ

(
h2 U ′′(w)

u′′(c(w))

)〉)
With the notations γ(c(w)) := −u′′(c(w))/u′(c(w)), ẇ := U ′(w)/u′(c(w)) and
ẅ := U ′′(w)/u′′(c(w)) and developing the square:

d2
wc(h)2 = γ(c(w))

(
(Ep(hẇ))2 + 2Ep(hẇ) 〈∇A(ŵ), ϕ(hẇ)〉+ 〈∇A(ŵ), ϕ(hẇ)〉2

)
+ u′(c(w))

〈
∇2A(ŵ).ϕ(hẇ), ϕ(hẇ)

〉
− γ(c(w))

(
Ep(h2ẅ) +

〈
∇A(ŵ), ϕ(h2ẅ)

〉)
Finally rearranging the terms gives the result:

d2
wc(h)2 = −γ(c(w))

(
Ep(h2ẅ)− (Ep(hẇ))2

)
− γ(c(w))

(〈
∇A(ŵ), ϕ(h2ẅ)

〉
− 〈∇A(ŵ), ϕ(hẇ)〉2

)
+ 2γ(c(w))Ep(hẇ) 〈∇A(ŵ), ϕ(hẇ)〉
+ u′(c(w))

〈
∇2A(ŵ).ϕ(hẇ), ϕ(hẇ)

〉
A.2 Mean Variance Variability Preference

Proof of Proposition 4.1 Proposition 4 in Siniscalchi (2009) proves that <1

is more ambiguity averse than <2 if and only if for all d ∈ Rn, A1(d) 6 A2(d).
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Suppose that <1 is more ambiguity averse than <2 and that |λ1
i | < |λ2

i | that
is there exist η > 0 such that λ1

i = λ2
i + 2η (all eigenvalues are negative). Take

an act h = αζ̂i with α ∈ R∗, that is ϕ̂(h) = αêi. Then with our assumptions, the
second order approximations are: A1(ϕ̂(h)) = 1

2λ
1
iα

2 + o(|α|2) and A2(ϕ̂(h)) =
1
2λ

2
iα

2 + o(|α|2) and we have

A2(ϕ̂(h))−A1(ϕ̂(h)) + ηα2 = o(|α|2)

that is for all ε > 0, there exists r > 0 such that for all α with |α|2 6 r

|A2(ϕ̂(h))−A1(ϕ̂(h)) + ηα2|
|α|2

6 ε.

As A2(ϕ̂(h))−A1(ϕ̂(h)) is positive and η is strictly positive:

η 6
A2(ϕ̂(h))−A1(ϕ̂(h))

α2
+ η 6 ε

a contradiction (choose ε = η/2).
Now suppose that for all 0 6 i < n |λ1

i | > |λ2
i | and there exists d ∈ Rn such

that A1(d) > A2(d) that is there exists η > 0 such that A1(d) = A2(d) + η. Write
d =

∑n−1
i=0 diêi so that

η = A1(d)−A2(d) =
1

2

n−1∑
i=0

(λ1
i − λ2

i )d
2
i + o(‖d‖2Rn)

and for all ε > 0, there exists r > 0 such that for all d with ‖d‖2Rn 6 r

η 6 η +

∑n−1
i=0 (λ2

i − λ1
i )d

2
i

‖d‖2Rn

6 ε

a contradiction.
As ∇2A1(0n) = −QΛQT, with qij being the elements of Q, this result implies

that <1 is more ambiguity averse than <2 if and only if for all 0 6 i < n and for
all 0 6 j < n:

∂2A1

∂xi∂xj
(0n) =

n−1∑
k=0

λ1
kqikqjk 6

n−1∑
k=0

λ2
kqikqjk =

∂2A2

∂xi∂xj
(0n)

A.3 Application to the choice of the Optimal Portfolio

Proof of Proposition 5.1 In our setting we have:

sgnβ(r̃1, r̃2) = sgn
σ12

σ11
= sgnσ12

and
sgnα(r̃1, r̃2) = sgn(E2 −

σ12

σ11
E1) = sgn(E2σ11 − E1σ12)
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As σ11σ̂22 − σ2
12 = var(r̃1)var(r̃2) − (cov(r̃1, r̃2))2 + θ

γ var(r̃1)var(Ar̃2), the
denominator in ψ∗2 is positive by the Cauchy-Schwarz inequality and the positivity
of the variances. Therefore

sgnψ∗2 = sgn(E2σ11 − E1σ12) = sgnα(r̃1, r̃2).

which proves the first relationship. Then the following derivatives:

∂(ψ∗1/ψ
∗
2)

∂θ
=

E1

E2σ11 − E1σ12
· ∂σ̂22

∂θ
=

E1

E2σ11 − E1σ12
· 1

γ
var(Ar̃2)

∂ψ∗2
∂θ

= −1

γ

E2σ11 − E1σ12

(σ11σ̂22 − σ2
12)2
· σ11

1

γ
var(Ar̃2)

∂ψ∗1
∂θ

=
1

γ

E1
1
γ var(Ar̃2)(σ11σ̂22 − σ2

12)− σ11
1
γ var(Ar̃2)(E1σ̂22 − E2σ12)

(σ11σ̂22 − σ2
12)2

=
1

γ2
var(Ar̃2)σ12

−E1σ12 + σ11E2

(σ11σ̂22 − σ2
12)2

∂(ψ∗1/ψ
∗
2)

∂γ
=

E1

E2σ11 − E1σ12
· ∂σ̂22

∂γ
= − E1

E2σ11 − E1σ12
· θ
γ2

var(Ar̃2)

∂ψ∗2
∂γ

= − E2σ11 − E1σ12

(γσ11σ̂22 − γσ2
12)2

(σ11σ22 − σ2
12)

imply respectively

sgn
∂(ψ∗1/ψ

∗
2)

∂θ
= sgn(E2σ11 − E1σ12) = sgnα(r̃1, r̃2)

sgn
∂ψ∗2
∂θ

= − sgn(E2σ11 − E1σ12) = − sgnα(r̃1, r̃2)

sgn
∂ψ∗1
∂θ

= sgn(σ12) sgn(E2σ11 − E1σ12) = sgnα(r̃1, r̃2)β(r̃1, r̃2)

sgn
∂(ψ∗1/ψ

∗
2)

∂γ
= sgn

∂ψ∗2
∂γ

= − sgn(E2σ11 − E1σ12) = − sgnα(r̃1, r̃2)

Proof of Proposition 5.2 Starting from the definitions, replacing and rear-
ranging the terms lead to the results:

A = E1σ̂22 − E2σ̂12

= E1(σ2
C2 + σ2

NC2 + θ
γσ

2
A2)− E2(ρCσC1σC2 + ρNCσNC1σNC2 + θ

γρAσA1σA2)

=
(
E1σ

2
C2 − E2ρCσC1σC2

)
+
(
E1σ

2
NC2 − E2ρNCσNC1σNC2

)
+ θ

γ

(
E1σ

2
A2 − E2ρAσA1σA2

)

B = E2σ̂11 − E1σ̂12

= E2(σ2
C1 + σ2

NC1 + θ
γσ

2
A1)− E1(ρCσC1σC2 + ρNCσNC1σNC2 + θ

γρAσA1σA2)

=
(
E2σ

2
C1 − E1ρCσC1σC2

)
+
(
E2σ

2
NC1 − E1ρNCσNC1σNC2

)
+ θ

γ

(
E2σ

2
A1 − E1ρAσA1σA2

)
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C = σ̂11σ̂22 − σ̂2
12

= (σ2
C1 + σ2

NC1 + θ
γσ

2
A1)(σ2

C2 + σ2
NC2 + θ

γσ
2
A2)

− (ρCσC1σC2 + ρNCσNC1σNC2 + θ
γρAσA1σA2)2

= σ2
C1σ

2
C2 + σ2

C1σ
2
NC2 + θ

γσ
2
C1σ

2
A2 + σ2

NC1σ
2
C2 + σ2

NC1σ
2
NC2 + θ

γσ
2
NC1σ

2
A2

+ θ
γσ

2
A1σ

2
C2 + θ

γσ
2
A1σ

2
NC2 + θ2

γ2
σ2
A1σ

2
A2 − ρ2

Cσ
2
C1σ

2
C2 − ρ2

NCσ
2
NC1σ

2
NC2 − θ2

γ2
ρ2
Aσ

2
A1σ

2
A2

− 2ρCσC1σC2ρNCσNC1σNC2 − 2 θγρCσC1σC2ρAσA1σA2 − 2 θγρNCσNC1σNC2ρAσA1σA2

= σ2
C1σ

2
C2(1− ρ2

C) + σ2
NC1σ

2
NC2(1− ρ2

NC) + θ2

γ2
σ2
A1σ

2
A2(1− ρ2

A)

+ σ2
C1σ

2
NC2 + σ2

NC1σ
2
C2 − 2ρCσC1σC2ρNCσNC1σNC2

+ θ
γ

[
σ2
C1σ

2
A2 + σ2

A1σ
2
C2 − 2ρCσC1σC2ρAσA1σA2

]
+ θ

γ

[
σ2
A1σ

2
NC2 + σ2

NC1σ
2
A2 − 2ρNCσNC1σNC2ρAσA1σA2

]
= σ2

C1σ
2
C2(1− ρ2

C) + σ2
NC1σ

2
NC2(1− ρ2

NC) + θ2

γ2
σ2
A1σ

2
A2(1− ρ2

A)

+ (σC1σNC2 − σNC1σC2)2 + 2σC1σC2σNC1σNC2(1− ρCρNC)
+ θ

γ

[
(σC1σA2 − σA1σC2)2 + 2σC1σC2σA1σA2(1− ρCρA)

]
+ θ

γ

[
(σA1σNC2 − σNC1σA2)2 + 2σNC1σNC2σA1σA2(1− ρNCρA)

]
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